期刊文献+

DNA损伤响应信号通路与蛋白质翻译后修饰 被引量:2

Protein post translational modifications involved in DNA damage response pathways
原文传递
导出
摘要 DNA损伤响应涉及到损伤的感应、信号的传递、DNA修复等一系列通路和过程。在这些过程中,有大量蛋白质以其不同的修饰状态参与其中。有些蛋白质的修饰参与信号的识别和传递;有些修饰改变酶的活性;而有些修饰则参与调节,有大量的研究者对参与DNA损伤相关蛋白的功能及修饰进行了研究。它们在DNA损伤响应分别发挥着不同的功能,其协同作用使细胞得以从细胞周期关卡中恢复,进入正常周期。有大量研究者对参与DNA损伤相关蛋白的功能及其修饰进行了研究。在本综述中我们将从DDR所涉及的信号通路角度,主要对DDR及DNA损伤修复途径中所涉及到的蛋白质及其修饰进行总结。 DNA damage response (DDR) is a complicated process, including signal sensing, signal transduc- tion, and DNA damage response, etc. During this process, lots of proteins are involved in with different kinds of post modifications. The abundance, especially modification status of those proteins play different roles and determine the life of cells encountered with DDR. There are great amount of studies around the proteins and protein modifications related with DDR, not only because of the biological significance, but also the potential of DDR in clinical application in tumor therapy. In this review, we summarized the modifications in some key proteins involved in DDR, from damage sensor to transducer and finally effecter.
作者 杜珊珊 张宇星 王全会 DU Shanshan ZHANG Yuxing WANG Quanhui(Key Laboratory of genome science and bioinformatics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《生命的化学》 CAS CSCD 2017年第1期93-103,共11页 Chemistry of Life
基金 北京市自然科学基金项目(5132023) 重庆市研究基础计划项目(cstc2013jcyj C00001)
关键词 DNA损伤响应 DNA损伤修复 蛋白质翻译后修饰 非同源末端连接 同源重组修复 DNA damage response DNA repair Protein post translational modification non-homologous end joining (NHEJ) homologous recombination repair (HR)
  • 相关文献

参考文献3

二级参考文献163

  • 1Ira G, Pellicioli A, Balijja A, et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK 1. Nature 2004; 431:1011-1017.
  • 2Freudenreich CH. Chromosome fragility: molecular mechanisms and cellular consequences. Front Biosci 2007; 12:4911-4924.
  • 3Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S-cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 2006; 20:3104-3116.
  • 4Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002; 297:552-557.
  • 5Prakash S, Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 2002; 16:1872- 1883.
  • 6Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol2006; 7:932-943.
  • 7Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 2006; 439:557- 562.
  • 8Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 2006; 21:15-27.
  • 9Bianchi M, DasGupta C, Radding CM. Synapsis and the formation of paranemic joints by E. coli RecA protein. Cell 1983; 34:931-939.
  • 10Hickson ID. RecQ helicases: caretakers of the genome. Nat Rev Cancer 2003; 3:169-178.

共引文献33

同被引文献4

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部