期刊文献+

并行计算框架Spark的自动检查点策略 被引量:1

Automatic checkpoint strategy for parallel computing frame with Spark
下载PDF
导出
摘要 针对现有的Spark检查点机制需要编程人员根据经验选择检查点,具有一定的风险和随机性,可能导致恢复开销较大的问题,通过对RDD属性的分析,提出了自动检查点策略,包括权重生成(WG)算法和检查点自动选择(CAS)算法.首先,WG算法分析作业的DAG结构,获取RDD的血统长度和操作复杂度等属性,计算RDD权重;然后,CAS算法选择权重大的RDD作为检查点进行异步备份,来实现数据的快速恢复.结果表明:在使用CAS算法时,不同数据集执行时间和检查点容量大小都有所增加,其中Wiki-Talk由于其计算量较大,增幅明显;使用CAS算法设置检查点后,在单点失效恢复的情况下,数据集的恢复时间较短.因此,自动检查点策略在略微增加执行时间开销的基础上,能够有效地降低作业的恢复开销. The existing Spark checkpoint mechanism required the programmer to choose the checkpoint according to the experience,thus it had a certain risk and randomness,resulting in large recovery overhead. To address this problem,the resilient distribution datasets( RDD) characteristics were analyzed,and the weight generated( WG) algorithm and checkpoint automatic selection( CAS) algorithm were put forward. First,in the WG algorithm,the directed acyclic graph( DAG) of the job was analyzed,and the lineage length and the operation complexity of RDD were obtained to compute the RDD weight. Secondly,in the CAS algorithm,the RDD with the maximum weight was selected for setting checkpoints asynchronously to fast recovery. The experimental results showthat comparing with the original Spark,the execution time and the checkpoint size of different datasets are increased by the CAS algorithm,while the increasing extent of Wiki-Talk is more obvious. For the single node failure recovery,the datasets have smaller recovery overhead after setting checkpoint by using the CAS algorithm. Therefore,the strategy can efficiently decrease the recovery overhead of jobs with sacrificing the slight extra overhead.
作者 英昌甜 于炯 卞琛 鲁亮 钱育蓉 Ying Changtian Yu Jiong Bian Chen Lu Liang Qian Yurong(School of Information Science and Engineering, Xinjiang University, Urumqi 830046 , China School of Software, Xinjiang University, Urumqi 830008, China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第2期231-235,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61462079 61262088 61562086 61363083 61562078) 新疆维吾尔自治区高校科研计划资助项目(XJEDU2016S106)
关键词 自动检查点 RDD权重 SPARK 恢复时间 automatic checkpoint resilient distribution dataset(RDD) weight Spark recovery time
  • 相关文献

参考文献5

二级参考文献275

  • 1刘怀,费树岷.控制系统中实时任务的动态优化调度算法[J].控制与决策,2005,20(3):246-250. 被引量:11
  • 2罗威,阳富民,庞丽萍,李俊.基于延迟主动副版本的分布式实时容错调度算法[J].计算机研究与发展,2007,44(3):521-528. 被引量:18
  • 3Wang YM, Chung PY, Lin IJ, Fuchs WK. Checkpoint space reclamation for uncoordinated checkpointing in message-passing systems. IEEE Trans. on Parallel and Distributed Systems, 1995,6(5):546-554.
  • 4Wang YM, Fuchs WK. Optimal message log reclamation for uncoordinated checkpointing. In: Proc. of the Conf. on Fault-Tolerant Parallel and Distributed Systems. Piscataway: IEEE Computer Society Press, 1995.24-29.
  • 5Gupta B, Rahimi S, Yang Y. A novel roll-back mechanism for performance enhancement of asynchronous cheekpointing and recovery. Informatica, 2007,31(1):1-13.
  • 6Elnozahy EN, Johnson DB, Zwaenepoel W. The performance of consistent checkpointing. In: Proc. of the 11th Syrup. on Reliable Distributed Systems. 1992.39-47.
  • 7Koo R, Toueg S. Checkpointing and rollback-recovery for distributed systems. IEEE Trans. on Software Engineering, 1987, SE-13(1):23-31.
  • 8Cao G, Singhal M. Low-Cost checkpointing with mutable checkpoints in mobile computing systems. In: Proc. of the 18th Int'l Conf. on Distributed Computing Systems. Piseataway: IEEE Computer Society Press, 1998. 464-471.
  • 9Sakata TC, Garcia IC. Non-Blocking synchronous checkpointing based on rollback-dependency trackability. In: Proc. of the 25th IEEE Symp. on Reliable Distributed Systems. Piscataway: IEEE Computer Society Press, 2006.411-420.
  • 10Tong Z, Kain RY, Tsai WT. A low overhead checkpointing and rollback recovery scheme for distributed systems. In: Proc. of the 8th Symp. on Reliable Distributed Systems. Piscataway: IEEE Computer Society Press, 1989. 12-20.

共引文献2983

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部