期刊文献+

InP基光电探测器材料的MOCVD锌扩散

Zn Diffusion of InP Based Photodetector Materials by MOCVD
下载PDF
导出
摘要 锌(Zn)扩散是制作InP基光电探测器(PD)的重要工艺过程。分析了锌扩散的机制,利用金属有机化学气相沉积(MOCVD)设备对InP基PD及雪崩光电探测器(APD)材料进行了锌扩散,由于MOCVD设备具有精确的温度控制系统,所以该扩散工艺具有简单、均匀性好、重复性好的优点。对于扩散后的样品,采用电化学C-V方法和扫描电子显微镜(SEM)等测试分析手段,研究了退火、扩散温度、扩散源体积流量和反应室压力等主要工艺参数对InP材料扩散速率和载流子浓度的影响,并将该锌扩散工艺应用于InP基光电探测器和雪崩光电探测器的器件制作中,得到了优异的器件性能结果。 Zn diffusion is an important technological process of fabricating the InP based photode- tector. The mechanism of Zn diffusion was analyzed, and the InP based PD and the avalanche photode- tector (APD) materials were diffused by the metal organic chemical vapor deposition (MOCVD) device. As the MOCVD device has an accurate temperature control system, this diffusion process has the advantages of simplicity, good uniformity and repeatability. For the diffused samples, the influences of the main technological parameters such as the annealing, diffusion temperature, diffusion source volume flow and chamber pressure on the diffusion rate and carrier concentration in the InP material were studied by test and analysis methods of the electrochemical C-V method and the scanning electron microscope (SEM). The Zn diffusion process was applied to the fabrication of the InP based photodetectors and the avalanche photodetector devices, achieving excellent device performance results.
出处 《半导体技术》 CAS CSCD 北大核心 2017年第4期300-304,共5页 Semiconductor Technology
关键词 锌扩散 金属有机化学气相沉积(MOCVD) INP 光电探测器 扩散速率 Zn diffusion metal organic chemical vapor deposition (MOCVD) InP photodetector diffusion rate
  • 相关文献

参考文献3

二级参考文献24

  • 1Yoon K H, Lee Y H, Yeo D H. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source. J. Electron.Materials, 2002, 31(4): 244~247
  • 2Frank F C, Turnbull D. Mechanism of diffusion of copper in germanium. Phys. Rev., 1956, 104:617~618
  • 3Tuck B, Zahari M D. Electrical measurements on homogeneous diffused p-type InP. J. Phys, D: Appl. Phys., 1977, 10(18):2473~2479
  • 4Tuck B, Hooper A. Diffusion profiles of zinc in indium phosphide. J. Phys, D: Appl. Phys., 1975, 8(15): 1806~1821
  • 5Van Gurp G J, Boudewijn P R, Kempeners M N C. Zinc diffusion in n-type indium phosphide. J. Appl. Phys., 1987, 61(5): 1846~1855
  • 6Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals. J. Appl. Phys., 1984, 55:3804~3812
  • 7Van Gurp G J, Van Dongen T, Fontijn G M. Interstitial and substitutional Zn in InP and InGaAsP. J. Appl. Phys., 1989, 65(2):553~560
  • 8Borghesi A, Guizzetti G, Patrini M. Infrared study and characterization of Zn diffused InP. J. Appl. Phys., 1993, 74(4): 2445~2449
  • 9Mahajan S, Bonner W A, Chin A K. The characterization of highly-zinc-doped InP crystals. Appl. Phys. Lett., 1979, 35:165~168
  • 10Williams R S, Barnes P A, Feldman L C. Determination of substitutional dopant and hole concentrations in Zn diffused singlecrystal InP. Appl. Phys. Lett. , 1980, 36(9): 760~762

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部