摘要
为提高托攻击检测的完整性、准确性和项目推荐可信度,使用托攻击评分与正常评分的数据差异度、正反序TOP窗口和后发评分特征以及密集评分特征,提出了一种基于时域背离特征分析的托攻击检测算法实现托攻击检测。实验结果表明:本文算法的F值平均为81.2%,最高可达92.7%,能同时提升托攻击检测的准确率、覆盖率,减少训练数据量,降低计算复杂度,同时还能兼顾托攻击防御。
In order to improve the completeness and accuracy of the shilling attack detection and the credibility of various recommendation information,this paper proposed a shilling attack detection algorithm based on characteristic of deviate from time-domain to detect shilling attack using the data diversity between the attack score and the normal score and the positive and negative top window and the later scoring and the dense scoring. The empirical analysis showed that the F of 81. 2%,upped to 92. 7%. The algorithm not only increased attack detection accuracy and coverage,but also reduced the amount of training data and the computational complexity and defense shilling attack.
作者
张婷
曾庆鹏
高胜保
肖异瑶
ZHANG Ting ZENG Qingpeng GAO Shengbao XIAO Yiyao(School of Information Engineering, Nanchang University, Nanchang 330031, China Jiangxi Branch of China Telecom Co. , Ltd. , Nanchang 330029, China)
出处
《南昌大学学报(工科版)》
CAS
2017年第1期82-87,共6页
Journal of Nanchang University(Engineering & Technology)
基金
国家自然科学基金资助项目(61262049)
江西省科技厅项目(2014ZBBE50008)
江西省教育厅科学技术研究项目(GJJ13087)
关键词
托攻击检测
时域背离特征
高斯混合模型
数据差异度
shilling attack detection
the characteristic of deviate from time domain
GMM
data diversity