期刊文献+

基于Spark Streaming的实时能耗分项计量系统 被引量:9

Real-time detailed classification energy consumption measurement system based on Spark Streaming
下载PDF
导出
摘要 能耗分项计量能够准确、及时、有效地发现能源使用问题,形成和实现最有效的节能措施。能耗分项计量系统需要对各项能源使用量在不同粒度上进行统计,既有实时性的需求,又需要涉及到聚合、去重、连接等较为复杂的统计需求。由于数据产生快、实时性强、数据量大,所以很难统一采集并入库存储后再作处理,这便导致传统的数据处理架构不能满足需求。为此,提出基于Spark Streaming大数据流式技术构建一个实时能耗分项计量系统,对实时能耗分项计量的系统架构和内部结构进行了详细介绍,并通过实验数据分析了系统的实时数据处理能力。与传统架构不同,实时能耗分项计量系统在数据流动的过程中实时地进行捕捉和处理,一方面把捕捉到的异常信息及时报警到前端,同时把分类分项统计处理的结果保存到数据库,以便进行离线分析和数据挖掘,能有效地解决上述数据处理过程中遇到的问题。 Detailed classification energy consumption measurement can discover energy consuming issues more accurately, timely and effectively, which can form and implement the most effective energy-saving measures. Detailed classification energy measurement system needs to calculate energy consumption amounts at multiple time scales according to detailed classification coding. Not only does it need to complete the tasks timely, but also need to deal with data aggregating, data de-duplication and data joining operations. Due to the fast speed of the data being generated, the requirement of the data being processed in real-time, and the big size of the data volume, it is difficult to store the data to a database system first, and then to process the data afterwards. Therefore, the traditional data processing infrastructure cannot fulfil the requirements of detailed classification energy consumption measurement system. A new real-time detailed classification energy consumption measurement system based on Spark Streaming technologies was designed and implemented, the system infrastructure and the internal structure of the system were introduced in detail, and its real-time data processing capabilities were proved through experiments. Different from the traditional ways, the proposed system processes energy consumption data in real-time to capture any unusual behaviour timely; at the same time, it separates the data and calculates the consumption usages according to the detailed classification coding, and stores the results to a database system for offline analysis and data mining, which can effectively solve the previously mentioned problems encountered in the data processing process.
作者 武志学
出处 《计算机应用》 CSCD 北大核心 2017年第4期928-935,共8页 journal of Computer Applications
关键词 流式计算 能耗分项计量 SPARK STREAMING APACHE Kafka 大数据 stream computing detailed classification energy consumption measurement Spark Streaming Apache Kafka big data
  • 相关文献

参考文献3

二级参考文献5

  • 1江亿,薛志峰.审视北京大型公共建筑节能[J].科技潮,2004(10):18-22. 被引量:15
  • 2清华大学建筑节能研究中心.关于政磨机构公哭建筑能耗调研情况及今后开展节能工作的报告.
  • 3北京市节能环保中心.清华大学建筑节能研究中心北京市政府机俺式点单位节能诊断综合报告.
  • 4清华大学建筑节能研究中心.大型公建毖耗分项计璺实肘监测分析系统EMS-Ⅱ研究报告与实施指南.
  • 5蒋伟,刘爱兰,柳迎春.胜利油田物探院低压配电系统改造[J].智能建筑电气技术,2008,2(2):55-58. 被引量:4

共引文献26

同被引文献85

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部