期刊文献+

基于离散序列报文的协议格式特征自动提取算法 被引量:9

Automatic protocol format signature construction algorithm based on discrete series protocol message
下载PDF
导出
摘要 针对缺少会话信息的离散序列报文,提出一种基于离散序列报文的协议格式(SPMbFSC)特征自动提取算法。SPMbFSC在对离散序列报文进行聚类的基础上,通过改进的频繁模式挖掘算法提取出协议关键字,进一步对协议关键字进行选择,筛选出协议格式特征。仿真结果表明,SPMbFSC在以单个报文为颗粒度的识别中对FTP、HTTP等六种协议的识别率均能达到95%以上,在以会话为颗粒度的识别中识别率可达90%。同等实验条件下性能优于自适应特征(AdapSig)提取方法。实验结果表明SPMbFSC不依赖会话数据的完整性,更符合实际应用中由于接收条件限制导致会话信息不完整的情形。 To deal with the discrete series protocol message without session information, a new Separate Protocol Message based Format Signature Construction(SPMbFSC) algorithm was proposed. First, separate protocol message was clustered,then the keywords of the protocol were extracted by improved frequent pattern mining algorithm. At last, the format signature was acquired by filtering and choosing the keywords. Simulation results show that SPMbFSC is quite accurate and reliable, the recognition rate of SPMbFSC for six protocols(DNS, FTP, HTTP, IMAP, POP3 and IMAP) achieves above 95% when using single message as identification unit, and the recognition rate achieves above 90% when using session as identification unit.SPMbFSC has better performance than Adaptive Application Signature(AdapSig) extraction algorithm under the same experimental conditions. Experimental results indicate that the proposed SPMbFSC does not depend on the integrity of session data, and it is more suitable for processing incomplete discrete seriesprotocol message due to the reception limitation.
出处 《计算机应用》 CSCD 北大核心 2017年第4期954-959,969,共7页 journal of Computer Applications
关键词 离散序列报文 协议关键字提取 自适应特征挖掘 格式特征 协议识别 extraction dadptive format signature mining format signature protocol identification
  • 相关文献

参考文献3

二级参考文献44

  • 1赵咏,姚秋林,张志斌,郭莉,方滨兴.TPCAD:一种文本类多协议特征自动发现方法[J].通信学报,2009,30(S1):28-35. 被引量:10
  • 2金婷,王攀,张顺颐,陆青莲,陈东.基于DPI和会话关联技术的QQ语音业务识别模型和算法[J].重庆邮电学院学报(自然科学版),2006,18(6):789-792. 被引量:10
  • 3THOMAS K, ANDRE B, NEVIL B. File-sharing in the Intemet: a Characterization of P2P Traffic in the Backbone[R]. UC, Riverside, 2003.
  • 4SUBHABRATA S, OLIVER S, WANG D M. Accurate, scalable in network identification of P2P traffic using application signatures[A]. International World Wide Web Conference[C]. New York,2004.
  • 5KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: multilevel tratfic classification in the dark[A]. Proc of ACM SIGCOMM[C]. Philadelphia, PA, 2005.
  • 6KARAGIANNIS T, BROIDO A, FALOUTSOS M. Transport layer identification of P2P traffic[A]. Proc of ACM SIGCOMM IMC[C]. Taormina, Sicily, Italy, 2004.
  • 7ZANDER S, NGUYENI T, ARMITAGEI G.Self-learning IP traffic classification based on statistical flow characteristics[A]. Proc of PAM[C]. Boston, MA, 2005.
  • 8ZUEV D, MOORE A W. Traffic classification using a statistical approach[A]. Proc of PAM[C]. Boston, 2005.
  • 9HERN E NOBEL A B, SMITH F D. Statistical clustering of intemet communication patterns[A]. Proceedings of the 35th Symposium on the Interface of Computing Science and Statistics, Computing Science and Statistics[C]. 2003.
  • 10MOORE A W, ZUEV D. Discriminators for Use in Flow-Based Classification[R]. Intel Research, Cambridge, 2005.

共引文献55

同被引文献84

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部