期刊文献+

人脸识别中基于学习的核图像微分滤波器

Learning based kernel image differential filter for face recognition
下载PDF
导出
摘要 针对人脸识别应用,提出一种基于学习且具有鉴别能力的核图像微分滤波器。首先,区别于现有滤波器的手工设计方法,该滤波器利用训练集动态学习获得,通过在学习过程中融入线性判别分析(LDA)思想,可在增加滤波后图像类内相似度的同时减小类间相似度;其次,在线性滤波分类器的基础上进一步引入二阶微分信息,并结合核方法在高维空间下进行滤波器学习,使得图像中的细节和非线性信息可以得到更好的利用并获得更具鉴别力的特征描述。AR和ORL人脸库上的多组对比实验结果表明,与线性可学习图像滤波器IFL、不考虑微分信息的核图像滤波器以及只考虑一阶微分信息的核图像滤波器进行比较,所提算法可有效提高识别性能。 For the applications of face recognition, a learning based kernel image differential filter was proposed. Firstly,instead of designing the image filter in a handcrafted or analytical way, the new image filter was designed by dynamically learning from the training data. By integrating the idea of Linear Discriminant Analysis(LDA) into filter learning, the intraclass difference of filtered image was attenuated and the inter-class difference was amplified. Secondly, the second order derivative operator and kernel trick were introduced to better extract the image detail information and cope with the nonlinear feature space problem. As a result, the filter is adaptive and more discriminative feature description can be obtained. The proposed algorithm was experimented on AR and ORL face database and compared with linearly learning image filter named IFL, kernel image filter without differential information, and kernel image filter considering only one order differential information. The experimental results validate the effectiveness of the proposed method.
出处 《计算机应用》 CSCD 北大核心 2017年第4期1185-1188,1192,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61201396 61301296) 国家科技支撑计划项目(2014BAH27F01) 国家电网公司科技项目(5212D01502DB)~~
关键词 滤波器学习 线性判别分析 核空间 二阶微分 人脸识别 filter learning Linear Discriminant Analysis(LDA) kernel space second order derivative face recognition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部