摘要
本文研究在高斯过程驱动下桥:d X_t=-αX_t/(T-t)dt+dG_t,0≤t<T参数0<α≤1/2估计问题,其中G是高斯过程.基于当t→T时轨道路径{X_s,s∈[0,t]}的观测量,获得参数α的最小二乘估计量α?的收敛和渐进分布结果,并得到其收敛率.
In this paper, we consider the parameter estimation problem for the parameterα of a Gaussian bridge defined as d X_t =-αX_t/(T-t)dt + d G_t, 0 ≤ t T, with 0 α ≤1/2, where G is a Gaussian process. We obtain the consistency and the asymptotic distributions of the least squares estimator α of α based on the observation {X_s, s ∈ [0, t]} as t → T. Moreover,we also obtain the rate of this convergence.
出处
《应用数学》
CSCD
北大核心
2017年第2期264-277,共14页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11271020)
the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)
关键词
参数估计
最小二乘估计法
高斯过程
桥
Parameter estimation
Least squares method
Gaussian processes
Bridge