摘要
艾文宝(2004)的宽邻域算法弥补了内点法在理论和实践表现之间的差异.基于这个算法的优越性,将其推广到线性互补问题中.新算法在一次迭代中,采用两个方向的线性组合作为新方向,并以满步长到达下一个点.可以证明,该算法具有O(n^(1/2)L)的理论复杂度,这是迄今为止最好的复杂度结果.同时,在假设线性互补问题存在严格互补解的前提下,证明算法具有局部二次收敛性.最后,数值实验说明算法是有效的.
The algorithm, proposed by AI(2004) in his new wide neighborhood, can fill the gap between in theory and in practice for primal-dual interior-point methods. Based on the point, it is generalized to solve linear complementarity problems. In each iteration of the algorithm of AI, a linear combined direction is used, and a full step size along the direction is adequate for the next iterate point. It can be proved that the algorithm has an O(n(1/2) L) complexity bound, which is the best result so far. Furthermore,its quadratic convergence can be shown under the assumptation that a strictly complementary solution exists. Numerical tests show that it is effective.
出处
《应用数学》
CSCD
北大核心
2017年第2期337-343,共7页
Mathematica Applicata
基金
国家自然科学基金(11301415
61303030)
陕西省教育厅专项科研基金资助项目(15JK1651)
关键词
原-对偶内点法
宽邻域
线性互补问题
二次收敛
Primal-dual interior-point method
Wide neighborhood
Linear complementarity problem
Quadratic convergence