期刊文献+

可重构柔索并联机器人协同避障方法研究 被引量:10

Study on the collaborative obstacle avoidance method for reconfigurable cable driven parallel robot
下载PDF
导出
摘要 针对可重构索驱动机器人自身结构与环境障碍物间高碰撞风险问题,设计了一种基于临界支撑线及多指抓握的可重构柔索机器人协同避障方法。通过简化环境障碍物与机器人结构得到一类可重构柔索机器人在复杂环境下的一般模型,在此模型基础上利用其结构的拓扑约束及障碍物间的临界支撑线求取机器人的无碰撞运动区域;通过凸包算法及凸包映射算法求取不同构型及障碍物分布下可重构柔索并联机器人的力封闭工作空间,并分析不同构型及障碍物分布对机器人无碰撞力封闭工作空间的影响;随后,通过优化算法求取指定运动轨迹上最优索分布;最后在重构索驱动机器人实验平台对所得优化结果进行验证。实验结果显示,所设计的可重构柔索机器人协同避障方法能有效避免重构索驱动机器人运动过程中的碰撞。 In order to deal with the collision between the components of the reconfigurable cable-driven parallel robot( RCDPR) and the obstacles in operating environment,a novel collaborative obstacle avoidance method is presented based on critical support lines and multi-finger grasp. Firstly,the general model of RCDPR in complex environment is derived by simplifying the robot structures and obstacles. Based on the model,the collision-free area of the RCDPR is estimated using the topological constraint of robot structure and the critical support lines between obstacles. The collision-free force closure workspace of different types of RCDPRs and obstacle distribution is obtained with convexhull method and convexhull mapping method,respectively. The impact of obstacle distribution and robotic type is analyzed. Then,in terms of a specific trajectory for the end-effector of the RCDPR,the optimal distribution of cables is derived with optimization algorithm. Finally,the verification is conduction the RCDPR prototype. The experimental results indicate that the presented method can effectively prevent the collision during the RCDPR movement.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第3期593-601,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51575150)项目资助
关键词 可重构柔索并联机器人 协同避障 力封闭工作空间 多指抓握 最优索力分布 reconfigurable cable-driven parallel robot collaborative obstacle avoidance force closure workspace multi-finger grasp optimal distribution of cable force
  • 相关文献

参考文献4

二级参考文献53

  • 1宁远明,刘晏,明建.基于反演设计的机器人动态滑模控制理论对月表机械臂模型的分析[J].仪器仪表学报,2013,34(S1):78-82. 被引量:4
  • 2王俭,肖金球,赵鹤鸣.目标信号导航的机器人路径二次优化[J].电子测量与仪器学报,2007,21(5):73-76. 被引量:2
  • 3ZHANG ZH Y, ZHAO Z P. A multiple mobile robots path planning algorithm based on a -star and dijkstra algo- rithm[ J]. International Journal of Smart Home, 2014, 8 (3) : 75-86.
  • 4DERRICK J B, BEVLY D M. Adaptive steering control of a farm tractor with varying yaw rate properties [ J ]. Journal of Field Robotics, 2009, 26(6-7): 519-536.
  • 5KUNAR U, SUKAVANAM N. Backstepping based trajecto- ry tracking control of a four wheeled mobile robot[ J ]. Inter- national Journal of Advanced Robotic Systems, 2008, 5(4) : 403- 410.
  • 6BAIRD W H. An introduction to inertial navigation [ J ]. American Journal of Physics, 2009, 77 (9) : 8~-847.
  • 7YANG S, MENG M. An efficient neural network ap- proach to dynamic robot motion planning [ J ]. Neural Networks, 2000 13 (2) : 143-148.
  • 8SUGIHARA K, SMITH J. Genetic algorithms for adap- tive motion planning of an autonomous mobile robot [ C ]. IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997,138-143.
  • 9YONG T, QING L, LI J W. An improved PSO for path planning of mobile robots and its parameters discussion [ C ]. International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 34-38.
  • 10AGILI S, BJORNBERG D B, MORALES A. Optimized search over the Gabor dictionary for note decomposition and recognition [ J ]. Journal of the Franklin Institute, 2007, 344 (7) : 969-990.

共引文献86

同被引文献113

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部