期刊文献+

QLA-Means:检索结果聚类方法 被引量:1

QLA-Means:Search result clustering method
下载PDF
导出
摘要 针对搜索引擎检索大规模数据时结果聚类的性能有限问题,提出一种查询日志辅助的改进K-Means算法。将传统的K-Means聚类扩展为多层次聚类的形式,实现检索对象与检索结果之间的聚类;通过引入检索日志,辅助提升聚类的效果,实现检索结果推送的高相关性。实现结果表明,基于该算法的检索结果聚类,有着较高的准确率,检索过程的时间开销较低,综合效率与准确率而言,该算法是一种理想的检索结果聚类方法。 Focusing on the problem of limited performance in search result clustering, an improved K-Means algorithm was pre- sented which used query log as an additional tool. Traditional K-Means was extended to a multi-layer format, achieving cluste- ring using both search objects and results. Query logs were introduced for accuracy enhancement, improving the relevance of search results. Experimental results reveal the proposed algorithm has higher clustering precision and lower time consumption for searching. It is an ideal search result clustering method.
出处 《计算机工程与设计》 北大核心 2017年第4期1067-1070,1080,共5页 Computer Engineering and Design
关键词 K均值 检索结果聚类 查询日志 多层 标签契合度 K-Means search result clustering query log multi-layer label fit
  • 相关文献

参考文献3

二级参考文献122

  • 1刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 2赵世奇,刘挺,李生.一种基于主题的文本聚类方法[J].中文信息学报,2007,21(2):58-62. 被引量:24
  • 3Lan Huang. A Survey on Web Information Retrieval Teehnologies[EB/OL]. ECSL Technical Report, State University of New York,2000.
  • 4C. J van Rijsbergen. Information Retrieval[M]. London: Butterworths, 1979.
  • 5Oren Zamir, Oren Etzioni. Web document clustering A Feasibility Demonstration[C]//Research and Devel opment in Information Retrieval, 1998: 46-54.
  • 6Stanislaw Osinski, Jerzy Stefanowski, and Dawid Weiss. Lingo: Search Results Clustering Algorithm Based on Singular Value Decomposition[C]//Proceedings of the International IIS: Intelligent Information Processing and Web Mining Conference, Advances in Soft Computing, 2004 : 359-368.
  • 7Liping Jing, Michael K. Ng, and Joshua Zhexue Huang. An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data [J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(8) :1026-1040.
  • 8Michael Steinbach, George Karypis, Vipin Kumar. A Comparison of Document Clustering Techniques [EB/ OL]. Technical Report, University of Minnesota, 2000.
  • 9Wei Song; Soon Cheol Park. Genetic algorithm-based text clustering technique: Automatic evolution of clustes with high efficientcy [C]//Seventh International Conference on Web-Age Information Management Workshops. Hong Kong 2006: 17-17.
  • 10Richard Freeman, Hujun Yin. Self-Organising Maps for Hierarchical Tree View Document Clustering Using Contextual Information[C]//Proceedings of the IEEE International Joint Conference on Neural Networks. 2002: 123-128.

共引文献352

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部