期刊文献+

基于MRF区块聚类模型的人体检测方法 被引量:1

Human detection method based on MRF-blob-clusters model
下载PDF
导出
摘要 为解决现有人体检测方法对遮挡、姿态变化人体漏检率高的问题,提出一种鲁棒的人体检测方法。将人体划分为7个区块,针对不同区块提取方向梯度直方图特征,采用支持向量机方法进行训练,得到各个区块的检测器,用于描述相应的区块;将相同类型的区块组成一个聚类,在7个区块聚类上构建马尔科夫随机场区块聚类模型;采用变分法进行推理,求取模型最优解,检测人体目标。实验结果表明,与目前主流的人体检测方法相比,该方法的平均漏检率低,对人体遮挡和姿态变化的鲁棒性强。 For solving the problem that current human detection methods have high miss rate while detecting human with occlu- sion or multi-poses, a robust human detection method was proposed. The human body was divided into seven blobs, histogram of oriented gradient features were extracted from them, support vector machine method was used to train the features, and every blob's detector was obtained for describing the corresponding blob. Blobs with same type were combined into a cluster, MRF (Markov random field)-blob clusters model on seven blob clusters was built. The optimal solution was calculated and human was detected using variational calculus. Experimental results show that, comparing to the state-of-the-art methods, this method has lowest logaverage miss rate and strong robustness for occlusion and pose-variation of human.
作者 王丹 孙育
出处 《计算机工程与设计》 北大核心 2017年第4期1081-1085,共5页 Computer Engineering and Design
基金 河南省软科学研究计划基金项目(102400450034) 河南省科技攻关重点计划基金项目(122102210563 132102210215) 河南省高等学校重点科研基金项目(15B520008)
关键词 人体检测 马尔科夫随机场 方向梯度直方图 支持向量机 变分法 鲁棒 human detection Markov random field histogram of oriented gradient support vector machine variational calcu-lus robustness
  • 相关文献

参考文献2

二级参考文献55

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献191

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部