期刊文献+

铁路路基状态检测中探地雷达数据并行处理 被引量:11

Research on Parallel Processing Method for Ground Penetrating Radar Data in State Detection of Railway Subgrade
下载PDF
导出
摘要 为快速处理探地雷达检测铁路路基状态所产生的大量检测数据,缩短检测报告的生成周期,采用并行计算技术设计并构建适用于探地雷达数据解析的并行处理平台,利用计算机集群处理解析探地雷达数据;基于服务器计算能力的动态探地雷达数据任务负载均衡算法,对用户提交的探地雷达数据解析任务统一调度分发。采用实际的铁路路基状态检测雷达数据对构建的并行处理平台进行实验,分析雷达数据并行处理的准确性、时间消耗、并行化加速比和系统可扩展性等指标。结果表明:在8个节点的集群并行处理平台上进行探地雷达数据的处理效率比用单机版软件提高553%,处理时间比基于Hadoop的探地雷达数据并行处理方法缩短50%以上。 In order to improve the processing speed of large amount of ground penetrating radar (GPR) data produced by railway subgrade state detection, shorten the generation cycle of test report, parallel computing technology was introduced to design and construct the parallel processing platform for GPR data analysis. Computer cluster was used to process and analyze GPR data. Dynamic load balance algorithm based on server computing ability was proposed to schedule and distribute the GPR process task submitted by users. Experiments were carried through on the constructed parallel processing platform with the actual GPR data of railway subgrade condition detection. The accuracy, time consumption, parallel speedup and system scalability of the GPR data parallel processing platform were analyzed. Results show that the GPR data processing efficiency of 8-node cluster parallel processing platform is increased by 553% compared with the single version software. The processing time is reduced by more than 50% compared with the GPR data processing method based on Hadoop.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2017年第2期11-18,共8页 China Railway Science
基金 国家重大科学仪器设备开发专项(2012YQ030126) 核三废专项科研课题(环FZ1402-3) 中国铁道科学研究院行业服务技术创新项目(2015YJ036) 安徽省重大教学改革研究项目(2015zdjy074)
关键词 铁路路基 状态检测 探地雷达 数据处理 负载均衡 并行计算技术 计算机集群处理 Railway subgrade State detection Ground penetrating radar Data processing Load balance Parallel computing technology Computer cluster processing
  • 相关文献

参考文献5

二级参考文献54

  • 1杨新安.地质雷达检测铁路路基新技术[J].中国铁路,2004(6):41-43. 被引量:9
  • 2王定举.用斜向单管高压旋喷桩整治朔黄铁路路基病害[J].铁道建筑,2006,46(9):55-57. 被引量:13
  • 3杨学军,窦勇,胡庆丰.Progress and Challenges in High Performance Computer Technology[J].Journal of Computer Science & Technology,2006,21(5):674-681. 被引量:7
  • 4回首05多核之路:AMD英特尔Sun的技术攻坚战[EB/OL] http://news.pconline.com.cn/hy/0512/742256.html,2005-12.
  • 5A Agarwal,M Levy.The kill rule for multicore[A].Proc of IEEE Design Automation Conference[C].San Diego,2007.750-753.
  • 6科学家开发千核处理器运算速度提升20倍[EB/OL] http://www.it com.cn/news/cyxw/gjyj/010123016/952063.html,2010-12-30.
  • 7G Seshadri,R Jain,A Mittal.Parallelization of principal component analysis[A].IEEE Advance Computing Conference[C].Patiala,2010.44-49.
  • 8Xian-he Sun,Yong Chen.Reevaluating Amdahl' s law in the multicore era[J].Journal of Parallel and Distributed Computing,2010,70(2):183-188.
  • 9Mark D Hill,Michael R Marty.Amdahl's law in the multicore era[J].Computer,2008,41 (7):33-38.
  • 10J L Gustafson.Reevaluating Amdahl' s law[J].Communications of ACM,1988,31(5):532-533.

共引文献120

同被引文献81

引证文献11

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部