摘要
为快速处理探地雷达检测铁路路基状态所产生的大量检测数据,缩短检测报告的生成周期,采用并行计算技术设计并构建适用于探地雷达数据解析的并行处理平台,利用计算机集群处理解析探地雷达数据;基于服务器计算能力的动态探地雷达数据任务负载均衡算法,对用户提交的探地雷达数据解析任务统一调度分发。采用实际的铁路路基状态检测雷达数据对构建的并行处理平台进行实验,分析雷达数据并行处理的准确性、时间消耗、并行化加速比和系统可扩展性等指标。结果表明:在8个节点的集群并行处理平台上进行探地雷达数据的处理效率比用单机版软件提高553%,处理时间比基于Hadoop的探地雷达数据并行处理方法缩短50%以上。
In order to improve the processing speed of large amount of ground penetrating radar (GPR) data produced by railway subgrade state detection, shorten the generation cycle of test report, parallel computing technology was introduced to design and construct the parallel processing platform for GPR data analysis. Computer cluster was used to process and analyze GPR data. Dynamic load balance algorithm based on server computing ability was proposed to schedule and distribute the GPR process task submitted by users. Experiments were carried through on the constructed parallel processing platform with the actual GPR data of railway subgrade condition detection. The accuracy, time consumption, parallel speedup and system scalability of the GPR data parallel processing platform were analyzed. Results show that the GPR data processing efficiency of 8-node cluster parallel processing platform is increased by 553% compared with the single version software. The processing time is reduced by more than 50% compared with the GPR data processing method based on Hadoop.
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2017年第2期11-18,共8页
China Railway Science
基金
国家重大科学仪器设备开发专项(2012YQ030126)
核三废专项科研课题(环FZ1402-3)
中国铁道科学研究院行业服务技术创新项目(2015YJ036)
安徽省重大教学改革研究项目(2015zdjy074)
关键词
铁路路基
状态检测
探地雷达
数据处理
负载均衡
并行计算技术
计算机集群处理
Railway subgrade
State detection
Ground penetrating radar
Data processing
Load balance
Parallel computing technology
Computer cluster processing