期刊文献+

移动计算环境下恶意软件静态检测系统设计 被引量:1

Design of malware software static detecting system in mobile computing environment
下载PDF
导出
摘要 移动终端在互联网中下载到恶意软件的几率非常高,这对用户信息私密性造成了严重的威胁,但科研组织曾研究出的恶意软件检测系统往往误报率过高、实用性不强。为此,设计移动计算环境下恶意软件静态检测系统,其由特性提取与预处理模块和移动计算终端组成。特性提取与预处理模块根据静态检测特性数据库中的恶意软件标志特性,对用户移动终端软件的安装包特性、资源特性和编译特性进行提取,并使用静态检测函数对提取出的特性进行预处理,给出恶意与非恶意软件的特性分类结果。系统通过移动计算终端对特性分类结果中的恶意软件特性进行位置检测,隔离出用户移动终端中的恶意软件,防止恶意软件继续入侵。经实验分析可知,所设计的系统误报率较低、实用性较强。 The probability of malicious software downloaded in Intemet by mobile terminal is very high, whidh can cause a serious threat to user information privacy. The scientific research organization has developed a malware detection system, but its false alarm rate is often too high, and its practicability is poor. Therefore, a static detecting system of malicious software is designed for the mobile computing environment, which is composed of feature extraction and preprocessing module, and mobile computing terminal. The feature extraction and preprocessing module is used to extract the software installation package, re- source characteristic and compiling feature of user's mobile terminal according to the malware software marked features in the static detection feature database. The extracted feature is pretreated with static detecting function to give out the classification results of malicious and non-malicious software features. The position of the malicious software is detected by the mobile computing terminal according to malicious software features in the feature classification result. The malicious software in user's mobile terminal is isolated to prevent malicious software to make the continuous invasion. The experimental analysis shows that the designed system has low false alarm rate and strong practicability.
作者 赖修源
出处 《现代电子技术》 北大核心 2017年第8期61-64,共4页 Modern Electronics Technique
基金 国家自然科学基金(11504032) 四川省教育厅基金项目:大型综合运动会电子信息管理系统研究与应用(11ZA014)
关键词 移动计算 恶意软件 静态检测系统 用户移动终端 mobile computing malicious software static detection system user's mobile terminal
  • 相关文献

参考文献10

二级参考文献161

  • 1赵丽红,刘纪红,徐心和.人脸检测方法综述[J].计算机应用研究,2004,21(9):1-4. 被引量:43
  • 2陆永良,李汝勤,胡金莲.虚拟服装的发展历史和现状[J].纺织学报,2005,26(1):132-134. 被引量:32
  • 3李晓华,沈兰荪.基于多级梯度能量描述的压缩域人脸检测[J].电子与信息学报,2005,27(12):1909-1915. 被引量:2
  • 4刘洁,张汗灵.一种新的基于肤色模型的人脸检测算法[J].计算机工程与应用,2006,42(11):70-72. 被引量:10
  • 5张娅莉,王燕.BP神经网络人脸检测研究[J].洛阳大学学报,2006,21(4):82-84. 被引量:2
  • 6国家计算机网络应急技术处理协调中心.2012年中国互联网网络安全报告[R].北京:中国邮电出版社,2013:16-17.
  • 7JESSE B. Developing secure mobile application for Android[EB/OL] https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf, 2008.
  • 8SCHMIDT A D, SCHMIDT H G, BATYUK L. Smartphone malware evolution revisited: Android next target[A]. Proceedings of the 4th IEEE/nternational Conference on Malicious and Unwanted Software [C]. USA, 2009. 1-7.
  • 9SCHMIDT A D, SCHMIDT H G, CLAUSEN J. Static analysis of executables for collaborative malware detection on android[A]. IEEE International Congress on Communication (ICC) 2009 - Communica- tion and Information Systems Security Symposium[C]. 2009.
  • 10ENCK W, ONGTANG M, MCDANIEL P. Understanding Android security[J]. IEEE Security and Privacy, 2009, 7(1):50-57.

共引文献119

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部