期刊文献+

一类二阶Hamilton系统次调和解的存在性 被引量:1

Subharmonic Solutions for a Class of Second-order Hamiltonian Systems
下载PDF
导出
摘要 研究了一类次二次的二阶Hamilton系统次调和解的存在性.利用鞍点定理,得到了一个新的存在性结果,推广和改进了以往文献中的相关结论. In this paper,we investigate the existence of subharmonic solutions for subquadratic second-order Hamiltonian systems.By using saddle point theorem,a new existence theorem is obtained. Our theorem extends and improves known results.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第2期172-176,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571176)
关键词 次调和解 次二次 临界点 鞍点定理 subharmonic solution subquadratic critical point saddle point theorem
  • 相关文献

参考文献2

二级参考文献31

  • 1李成岳,路月峰,钟仕增,张卫杰.一类非对称二阶系统正值同宿轨道的存在性[J].曲阜师范大学学报(自然科学版),2005,31(4):6-10. 被引量:1
  • 2Tao Z L,Tang C L.Periodic solutions of second-order Hamiltonian systems[J].J Math Anal Appl,2004,293(2):435-445.
  • 3Ma S W,Zhang Y X.Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[J].J Math Anal Appl,2009,351(1):469-479.
  • 4Faraci F,Livrea R.Infinitely many periodic solutions for a second-order nonautonomous system[J].Nonlinear Anal:TMA,2003,54(1):417-429.
  • 5Zhang P,Tang C L.Infinitely many periodic solutions for nonautonomous sublinear second-order Hamiltonian systems[J].Abstract and Applied Analysis,2010,(7):1-10.
  • 6Wu X P,Tang C L.Periodic solutions of a class of non-autonomous second-order systems[J].J Math Anal Appl,1999,236(8):227-235.
  • 7Wu X P,Tang C L.Periodic solutions for second order systems with not uniformly coercive potential[J].J Math Anal Appl,2001,215(7):386-397.
  • 8Tang C L.Multiplicity of periodic solutions for second-order systems with a small forcing tenn[J].Nonlinear Anal:TMA,1999,38(4):471-479.
  • 9Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
  • 10Antonacci F,Magrone P.Second order nonautonomous systems with symmetric potential changing sign[J].Rend Mat Appl,1998,18(7):367-379.

共引文献9

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部