期刊文献+

基于Census变换的立体匹配算法优化及医学影像应用

Research on a fast implementation algorithm based on Census transform stereo matching and its applications in medical imaging
下载PDF
导出
摘要 目的:建立并优化一种基于Census非参数变换的立体匹配算法。方法:详细分析了基于Census非参数变换的立体匹配,运用移动窗口技术和高速缓存,采用SSE2指令进行数据流的并行处理从而优化算法结构,缩短取指时间,提高计算效率。用Middlebury标准图像对对该算法进行验证,并用于临床阴道镜子宫颈图像对的立体匹配。结果:快速实现了对Middlebury标准图像对以及子宫颈图像对的立体匹配。结论:该算法能够有效提高立体匹配的实时性,可应用于外科手术导航等计算机辅助外科诊疗系统。 Aim: To propose a fast implementation algorithm based on Census transform stereo matching. Methods:Firstly,the Census transform stereo matching was investigated,and its implementation process was analyzed in detail. Secondly,in order to simplify the calculation process and improve the computational efficiency,the moving window technique and cache were employed to optimize the algorithm structure and shorten the fetch time of the instructions. Finally,the SSE2 instructions were adopted to realize the parallel processing for the data stream,and the proposed algorithm was tested with different image pairs. Results: Fast implementation for the stereo matching with the Middlebury standard image pairs and cervical image pair was achieved. Conclusion: The proposed algorithm can effectively improve the real time of the stereo matching based on Census transform,and it can be applied to the computer-aided surgical diagnosis and treatment system such as surgical navigation.
出处 《郑州大学学报(医学版)》 CAS 北大核心 2017年第2期146-150,共5页 Journal of Zhengzhou University(Medical Sciences)
基金 国家自然科学基金资助项目61602419 浙江省自然科学基金资助项目LY16F010008 LQ16F020003 浙江省教育厅科研项目Y201431354 浙江中医药大学校级课题2012ZY18
关键词 立体匹配 Census非参数变换 快速实现 医学影像应用 stereo matching Census transform fast implementation applications in medical imaging
  • 相关文献

参考文献1

二级参考文献14

  • 1Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 2002, 47 ( 1 ) : 7 - 42.
  • 2Brown M Z, Burschka D, Hager G D. Advances in Computational Stereo. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008.
  • 3Bobick A F, Intille S S. Large Occlusion Stereo. International Journal of Computer Vision, 1999, 33(3) : 181 -200.
  • 4Wei Yichen, Quan Long. Region-Based Progressive Stereo Matching //Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 106-113.
  • 5Tao H, Sawhney H, Kumar R. A Global Matching Framework for Stereo Computation// Proc of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada, 2001, Ⅰ : 532 - 539.
  • 6Lin M H, Tomasi C. Surfaces with Occlusions from Layered Stereo. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 1073 - 1078.
  • 7Comaniciu D, Meer P. Mean Shift : A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 603 - 619.
  • 8Birchfield S, Tomasi C. A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401 -406.
  • 9Middlebury College Stereo Vision Research Page [ EB/OL]. [2008- 09- 20]. http://vision. middlebury. edu/stereo.
  • 10Veksler O. Stereo Correspondence by Dynamic Programming on a Tree//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 384 - 390.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部