期刊文献+

高/低气压氩气感应耦合等离子体电磁波衰减效果建模研究及实验验证 被引量:1

Simulation and Mesurement of Electromagnetic Wave Attenuation by Inductively Coupled Ar-Plasma
下载PDF
导出
摘要 设计了一种雷达舱共形的电感耦合等离子体(ICP)发生装置,开展了ICP放电的流体模型研究,获得在高低气压及不同放电功率对ICP的电子密度分布的影响,据此得出与电磁散射相关的介电常数空间分布,在此基础上利用Z变换时域有限差分方法建立了电磁波在ICP中的传播模型,得出了在不同放电条件下ICP对电磁波的宽频段散射参量。同时开展实验,对该模型的结果进行验证。研究表明,气压为10 Pa时,ICP对电磁波的衰减带宽主要为6~8 GHz,平均反射率为-21dB左右。气压为150 Pa时,衰减带宽为13~15 GHz,此时碰撞吸收效果会增强,但由于等离子体轴向体积的压缩导致衰减效果相比于5 Pa下没有明显增强。 The interaction of the electromagnetic( EM) wave and the argon inductively coupled plasma( ICP),generated by the newly-developed radar-capsule conformal source,was mathematically modeled with fluidfield,theoretically analyzed,numerically simulated with software Z-FDTD,and experimentally evaluated. The influence of the discharge power and pressure on the electron density distribution of Ar-ICP and EM-wave attenuation was investigated. The calculated results show that the discharge power and pressure strongly affect the EM-wave attenuation. For example,at 10 Pa,the EM-wave attenuation occurred,with an average reflectance about-21 d B in6 - 8 GHz band,because of the resonant absorption and weak scattering; a larger discharge power shifted the peak of attenuation rate to a higher frequency. At 150 Pa,the scattering absorption of EM-wave increased in 13 - 15 GHz band; however,the attenuation was not better than that at 5 Pa,possibly because of the axial compressionof plasma. The simulated and measured results were in good agreement.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2017年第3期290-297,共8页 Chinese Journal of Vacuum Science and Technology
关键词 感应耦合等离子体 电磁波衰减 流体模型 时域有限差分方法 ICP Electromagnetic wave attenuation Fluid model Z-FDTD model
  • 相关文献

参考文献3

二级参考文献40

  • 1Zhuang Z W, Yuan N C, Liu S B, et al. 2005, Plasma Stealthy Technology. Science Press, Beijing.
  • 2Beskar C R. 2004, Cold Plasma Cavity Active Stealth Technology. St. Paul MN: Stavati, AD-A432633.
  • 3Li Y, Zhang Y J, Mo J J, et al. 2008, J. Microw., 24: 23.
  • 4Swarner W G, Peters L. 1963, IEEE Trans. Antennas Propag., 11:558.
  • 5Vidmar R J. 1990, IEEE Trans. Plasma Sci., 18:733.
  • 6Gregoire R J, Santoru J, Schumacher R W. Schu- macher. 1992, Electromagnetic-Wave in Unmagnetized Plasma. Malibu, CA: Hughes Res. Lab. AD-A250710.
  • 7Lee J H, Kalluri D K, Nigg G C. 2000, Int. J. Infrared Millim. Waves, 21:1223.
  • 8Lin S B, Mo J J, Yuan N C. 2003, Plasma Sc~. Teeh- nol., 5:1669.
  • 9Liu M H, Hu X W, Jiang Z H, et al. 2006, Chin. Phys. Lett., 23:410.
  • 10Cao H M, Fa P T. 2008, Chin. Phys. Lett., 25:2562.

共引文献17

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部