期刊文献+

基于RLSSVM-CPSOSA的PEM燃料电池系统建模

Modeling of PEMFC stack based on RLSSVM-CPSOSA algorithm
原文传递
导出
摘要 PEMFC电堆是一个包括流动、传热、传质和电化学反应等多种物理化学现象的复杂机体,其建模问题是一个具有挑战性的问题。本文提出一种基于RLSSVM-CPSOSA模型的燃料电池建模方法。CPSOSA算法将CO算法、模拟退火算法和粒子群算法有机结合,以克服粒子群算法早熟收敛的不足。然后利用CPSOSA算法对鲁棒最小二乘支持向量机模型(RLSSVM)进行参数寻优,从而获得RLSSVM-CPSOSA燃料电池模型。以MATLAB平台搭建PEMFC电堆模型并进行仿真研究,结果表明所提出的RLSSVM-CPSOSA模型的有效性和良好的预测精度。为PEM燃料电池实时控制系统奠定了基础。 A PEMFC stack is a complex object consisted of a lot of physicochemical characteristics such as fluxion, heat transfer, mass transfer process and electrochemical reaction, and modeling of PEMFC stack is a difficult and unsolved subject at present. A RLSSVM-CPSOSA method based on robust least squares support vector machine and CPSOSA algorithm is developed for modeling of PEMFC stack. By integrating chaos optimization (CO) and simulated annealing (SA) to the PSO, the CPSOSA algorithm, it makes the particles of CPSOSA maintain the diversity during the evolution so as to overcome the premature convergence of PSO. Then, the proposed CPSOSA algorithm is applied to obtain the optimal parameters of the RLSSVM. Researches on the optimized model are illustrated based on the data from a simulated PEMFC stack, and the results show that the proposed approach has great estimation accuracy and validity.
出处 《计算机与应用化学》 CAS 2017年第3期201-206,共6页 Computers and Applied Chemistry
基金 国家自然科学基金项目(60804027 61374133) 高校博士点专项科研基金(20133314120004)
关键词 质子交换膜燃料电池 鲁棒最小二乘支持向量机 混沌粒子群模拟退火算法 PEMFC robust least squares support vector machine chaos particle swarm optimization simulated annealing algorithm (CPSO-SA)
  • 相关文献

参考文献4

二级参考文献32

  • 1刘晓谦,王勇,穆顺勇.基于单纯形法的PID控制器参数优化设计[J].计算机仿真,2004,21(11):191-193. 被引量:25
  • 2张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 3常玉清,王福利,王小刚,吕哲.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244. 被引量:28
  • 4Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Process Letters, 1999, 9(3): 293-300.
  • 6Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 87-104.
  • 7Daszykowski M, Kaczmarek K, Heyden Y V, et al. Robust statistics in data analysis--A review basic concepts[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 203-219.
  • 8M~lle S F, Frese J V, Bro R. Robust methods for multivariate data analysis[J]. J of Chemometrics, 2005, 19(10): 549-563.
  • 9Kruger U, Zhou Y, Wang X, et al. Robust partial least squares regression: Algorithmic developments[J]. J of Chemometrics, 2008, 22(1): 1-13.
  • 10Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部