摘要
A two-dimensional dynamical model based on the Langevin equation was used to study the fission dynamics of the compound nuclei ^206Po and ^168Yb produced in the reactions ^12C+^194Pt and ^18O+^150Sm,respectively.The fission cross section and average pre-scission neutron multiplicity were calculated for the compound nuclei ^206Po and ^168Yb,and results of the calculations compared with the experimental data.The elongation coordinate was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis,K,considered as the second dimension in the Langevin dynamical calculations.In the two-dimensional calculations,a constant dissipation coefficient of K and a non-constant dissipation coefficient have been used to reproduce the abovementioned experimental data.It is shown that the two-dimensional Langevin equation can satisfactorily reproduce the fission cross section and average pre-scission neutron multiplicity for the compound nuclei ^206Po and ^168Yb by using constant values of the dissipation coefficient of K equal to γκ=0.18(MeV zs)^-1/2 and γκ= 0.20(MeV zs)^-1/2for the compound nuclei ^206Po and ^168Yb,respectively.
A two-dimensional dynamical model based on the Langevin equation was used to study the fission dynamics of the compound nuclei ^206Po and ^168Yb produced in the reactions ^12C+^194Pt and ^18O+^150Sm,respectively.The fission cross section and average pre-scission neutron multiplicity were calculated for the compound nuclei ^206Po and ^168Yb,and results of the calculations compared with the experimental data.The elongation coordinate was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis,K,considered as the second dimension in the Langevin dynamical calculations.In the two-dimensional calculations,a constant dissipation coefficient of K and a non-constant dissipation coefficient have been used to reproduce the abovementioned experimental data.It is shown that the two-dimensional Langevin equation can satisfactorily reproduce the fission cross section and average pre-scission neutron multiplicity for the compound nuclei ^206Po and ^168Yb by using constant values of the dissipation coefficient of K equal to γκ=0.18(MeV zs)^-1/2 and γκ= 0.20(MeV zs)^-1/2for the compound nuclei ^206Po and ^168Yb,respectively.
基金
Support from the Research Committee of the Persian Gulf University