期刊文献+

交通出行选择行为理论与模型应用分析 被引量:4

Traveling Habits and Preference Theories and Model Application
下载PDF
导出
摘要 从交通出行选择行为理论与模型的发展历程和理论渊源出发,阐述随机效用理论、期望效用理论、累积前景理论、后悔理论及非/半补偿模型的基本原理和应用现状,并对其在决策准则、决策情景、决策者假设和决策策略等方面比较分析,指出在应用中存在的问题和适用性。基于效用最大化的模型在实践中应用广泛,但其理性人假设和补偿形式受到质疑,其替代模型在描述和预测出行选择行为上有更大潜力,但需进行有效性验证。与贝叶斯学习、博弈论等结合描述出行选择的动态过程、从出行产生的内在机理和决策心理出发构建出行选择行为模型及大数据环境下的交通出行行为研究将是今后研究的方向。 The origins and development of travelling habits and preference theories and model are presented; random utility theory, expected utility theory, prospect theory, regret theory and the principle and current application of non/semi-compensation model are elaborated, which are compared in terms of decision principle, decision scenario, decision-maker assumption and decision strategy, etc. and the problems in application and adaptability are clarified. The models based on utility maximization are currently widely used, while their rational man supposition and the type of compensation are questioned. Its substitute models have more potential in description and forecast of travelling habits and behaviors, while they need to be more effectively validated. Bayesian Learning, game theory and other theories are adopted to describe the dynamic process of travelling. Establishing the travelling habits forecast model from the aspect of deep factor driving the traveling and the decision-making psychology and studying the travelling habits and behaviors based on big data would be the future trend.
作者 赵凯华
出处 《中国铁路》 2017年第2期55-61,共7页 China Railway
基金 轨道交通控制与安全国家重点实验室自主课题(RCS2016ZT008)
关键词 交通出行 随机效用理论 期望效用理论 前景理论 后悔理论 半补偿模型 大数据 数据导向 travelling preference pattern random utility theory expected utility theory prospect theory regret theory semi-compensation model big data data-oriented
  • 相关文献

参考文献6

二级参考文献58

  • 1林丽.城市快速轨道交通在我国的发展前景[J].南京林业大学学报(自然科学版),2004,28(5):103-106. 被引量:2
  • 2梅振宇,王炜,陈峻.区域公路OD流量预测新方法研究[J].公路交通科技,2005,22(1):108-110. 被引量:6
  • 3林国顺,许鸣鸣.地铁客流统计软件设计与开发[J].交通与计算机,1996,14(2):39-42. 被引量:1
  • 4ARENTZE T, TIMMERMANS H. Parametric action deci- sion-marking trees: incorporating continuous attribute vari- ables into rule based models of discrete choice[J]. Transpor tation Research Part B, Methodological, 2007, 41 (7): 772-783.
  • 5BELL D E. Regret in decision making under uncertainty[J]. Operations Research, 1982, 30(5): 961 -981.
  • 6ZHANG Jun-yi, TIMMERMANS H, BORGERS A, et al. Modeling traveler choice behavior using the concepts of rela- tive utility and relative interest[J]. Transportation Research Part B: Methodological, 2004, 38(3): 215-234.
  • 7GILBRIDE T J, ALLENBY G M. A choice model with con- junctive, disjunctive, and compensatory screening rules[J]. Marketing Science, 2004, 23(3): 391-406.
  • 8HESS S, STATHOPOULOS A, DALY A, Mixing of behavior processes: a modeling framework and three case-studies[C]// TRB. 90th Annual Meeting of Transportation Research Board. Washington DC: TRB, 2011: 1-18.
  • 9DENANT-BOEMONT L, PETIOT R. Information value and sequential decision-making in a transport setting: an experi mental study[J]. Transportation Research Part B: Methodo logical, 2003, 37(4): 365-386.
  • 10LEONG W, HENSHER D A. Embedding decision heuristics in discrete choice models: a review[J]. Transport Reviews, 2012, 32(3): 313-331.

共引文献50

同被引文献25

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部