摘要
TiO2/Bi2WO6 (TB) heterojunction photocatalyst was successfully synthesized and characterized by XRD, SEM, TEM, UV-Vis and photoluminescence measurement. The heterojunction interface structure of TB heterojunction photocatalyst was optimized via adjusting the ethylene glycol/water (EG/W) ratio. Based on XRD, SEM and TEM, the crystal size of Bi2WO6 reduced from 14.6 nm to 8.8 nm, and the interface structure between Bi2WO6 nanosheets and TiO2 particle significantly changed with increasing EG concentration. Furthermore, the photoeatalytic activity and the related mechanism of TB heterojunction photocatalyst were systematically discussed. Among them, TBEG/w sample shows the highest normalized apparent rate constant, which is attributed to its highest electron-hole pairs separation ability driven by optimized heterojunction interface between two semiconductors.
TiO2/Bi2WO6 (TB) heterojunction photocatalyst was successfully synthesized and characterized by XRD, SEM, TEM, UV-Vis and photoluminescence measurement. The heterojunction interface structure of TB heterojunction photocatalyst was optimized via adjusting the ethylene glycol/water (EG/W) ratio. Based on XRD, SEM and TEM, the crystal size of Bi2WO6 reduced from 14.6 nm to 8.8 nm, and the interface structure between Bi2WO6 nanosheets and TiO2 particle significantly changed with increasing EG concentration. Furthermore, the photoeatalytic activity and the related mechanism of TB heterojunction photocatalyst were systematically discussed. Among them, TBEG/w sample shows the highest normalized apparent rate constant, which is attributed to its highest electron-hole pairs separation ability driven by optimized heterojunction interface between two semiconductors.