期刊文献+

非齐型空间中一类满足Hrmander条件的参数型Marcinkiewicz积分交换子的估计

Estimates for Commutators of the Parameter Marcinkiewicz Integrals with Hrmander-type Condition in Non-homogeneous Spaces
原文传递
导出
摘要 设μ为R^d上的非负Radon测度,满足对固定的C_0>0和n∈(0,d],以及所有的x∈R^d和r>0,μ(B(x,r))≤C_0r^n.本文主要证明了由参数型Marcinkiewicz积分M~ρ和Lipschitz函数b生成的交换子M_b~ρ的有界性.在M的核函数满足较强的Hrmander条件下,作者证明了M_b~ρ不仅从Lebesgue空间L^p(μ)到Lebesgue空间L^q(μ)有界,从Lebesgue空间L^p(μ)到Lipschitz空间Lip_(β-n/p)(μ)有界,且从Lipschitz空间Lip_(β-n/p)(μ)到空间RBMO(μ)有界. Let μ be a nonnegative Radon on Rd,and μ satisfy the condition μ(B(x,r))≤C0rn for any x∈Rd,r〉0 and some fixed n∈(0,d].In this paper,the authors prove the boundedness of the commutator Mbρ generated by the parameter Marcinkiewicz integral Mρwith Lipschitz function b.Under the assumption that the kernel of M satisfies certain slightly stronger Hrmander-type condition,the authors prove that Mρbis not only bounded from the Lebesgue space Lp(μ)to the Lebesgue space Lq(μ),and from the Lebesgue space Lp(μ) to the Lipschitz space Lipβ-n/p(μ),but also Mbρ is bounded from the Lipschitz space Lipβ-n/p(μ)to the space RBMO(μ).
出处 《河南大学学报(自然科学版)》 CAS 2017年第2期247-252,共6页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(11261055)
关键词 非倍测度 参数型MARCINKIEWICZ积分 交换子 Lipβ(μ)函数 non-doubling measure parametric Marcinkiewicz integral commutator Lipβ(μ) function
  • 相关文献

参考文献1

二级参考文献14

  • 1Deng D, Han Y, Yang D. Besov spaces with non-doubling measure [J]. Transactions of the American Mathematical Society, 2006,358(7):2965-3001.
  • 2Han Y, Yang D. Triebel-Lizorkin spares with non-doubling measures [J]. Studia Mathemztica, 2004,162(2) :105-140.
  • 3Hu G, Meng Y, Yang D. New atmoic characterization of H1 space with non-doubling measures and its applications [J]. Mathematical Proceedings of the Cambrdge Philosophical Society, 2005,138(1):151-171.
  • 4Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderon-Zygmund operators on nonhom- geneous spaces [J]. Internatonal Mathematics Research Notices, 1998(9) :463- 487.
  • 5Nazarov F, Treil S, Volberg A. Accretive system Tb-theorems on nonhomogeneous spaces [J]. Duke Mathematical Jour- nal, 2002,113(2) :259-312.
  • 6Nazarov F, Treil S, Volberg A. The Tb-theorems on non-homogeneous spaces[J]. Acta Mathematical, 2003,190(2) :151 -239.
  • 7Tolsa X. Littlewood-Paley theory and the T(1)theorem with non-doubling measures [J]. Advances in Mathematics, 2001, 164(1) :57-116.
  • 8Yang D, Yang Do. Uni-orm boundedness for approximations of the identiy with nondoubling measures [J]. Journal of Ine- qualities and Applications, vol. 2007, Article ID 19574, 25 pages, 2007.
  • 9Hormander L . Estimates for translation invariant opertors in Lp spaces [J]. Acta Mathematica, 1960,104(1/2) :93-140.
  • 10Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz [J]. Trans Am Math Soe, 1958,88: 430- 466.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部