摘要
设μ为R^d上的非负Radon测度,满足对固定的C_0>0和n∈(0,d],以及所有的x∈R^d和r>0,μ(B(x,r))≤C_0r^n.本文主要证明了由参数型Marcinkiewicz积分M~ρ和Lipschitz函数b生成的交换子M_b~ρ的有界性.在M的核函数满足较强的Hrmander条件下,作者证明了M_b~ρ不仅从Lebesgue空间L^p(μ)到Lebesgue空间L^q(μ)有界,从Lebesgue空间L^p(μ)到Lipschitz空间Lip_(β-n/p)(μ)有界,且从Lipschitz空间Lip_(β-n/p)(μ)到空间RBMO(μ)有界.
Let μ be a nonnegative Radon on Rd,and μ satisfy the condition μ(B(x,r))≤C0rn for any x∈Rd,r〉0 and some fixed n∈(0,d].In this paper,the authors prove the boundedness of the commutator Mbρ generated by the parameter Marcinkiewicz integral Mρwith Lipschitz function b.Under the assumption that the kernel of M satisfies certain slightly stronger Hrmander-type condition,the authors prove that Mρbis not only bounded from the Lebesgue space Lp(μ)to the Lebesgue space Lq(μ),and from the Lebesgue space Lp(μ) to the Lipschitz space Lipβ-n/p(μ),but also Mbρ is bounded from the Lipschitz space Lipβ-n/p(μ)to the space RBMO(μ).
出处
《河南大学学报(自然科学版)》
CAS
2017年第2期247-252,共6页
Journal of Henan University:Natural Science
基金
国家自然科学基金资助项目(11261055)