期刊文献+

基于块分割的新型压缩感知算法 被引量:1

New Compressive Sensing Algorithm Based on Block Segmentation
下载PDF
导出
摘要 针对现有块分割压缩感知(block compressive sensing,BCS)算法的块效应问题,提出一种低复杂度、可消除块效应的新型块分割重构算法.在稀疏表达时,采用小波变换(DWT)代替离散余弦变换(DCT),改善图像细节分量;在测量时,依据分块图像频率特征对测量矩阵加权,提高图像质量;在重构时,采用正交匹配追踪(orthogonal matching pursuit,OMP)算法代替匹配追踪(matching pursuit,MP)算法,提高重构速度.仿真结果表明,所提出的算法可在保证重构速度的情况下,有效消除块效应,且不增加内存占用. To solve the blocking artifacts of prior block segment compressive sensing,a new reconstruction algorithm was proposed which could reduce the blocking artifacts at low complexity.When sparse representing,discrete wavelet transform(DWT)method was utilized instead of discrete cosine transform(DCT)to improve detail component of image.When measuring,the measurement matrix of each block was reweighted to improve the quality of image according to the difference frequency between each block.When reconstructing,the orthogonal matching pursuit(OMP)algorithm was used to speed up reconstruction rather than the matching pursuit(MP)algorithm.Simulation results demonstrated that the blocking artifacts could be effectively eliminated by the proposed algorithm without making any effects on reconstruction speed and memory requirement.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期486-491,496,共7页 Journal of Northeastern University(Natural Science)
基金 山东省自然科学基金资助项目(ZR2014FQ027) 中央高校基本科研业务费专项资金资助项目(201513015)
关键词 压缩感知 小波变换 正交匹配追踪算法 测量矩阵 块效应 compressive sensing(CS) wavelet transform orthogonal matching pursuit(OMP)algorithm measuring matrix blocking artifacts
  • 相关文献

参考文献2

二级参考文献22

  • 1E. Candes, M. Wakin. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25(2) :21-30.
  • 2E. Candes, T. Tao, Robust uncertainty principle : Exact signal reconstruction from highly incomplete frequency information [J] , IEEE Trans. Inform. Theory,2006, 52:489-509.
  • 3D. L. Donoho, Compressed sensing [ J ] , IEEE Trans. In- form. Theory, 2006,52 : 1289-1306.
  • 4Y. Tsaig and D. L. Donoho, Extensions of compressed sensing [ J] , Signal Processing 2006,86:533-548.
  • 5Thong T. Do, Yi Chen, Dzung T. Nguyen, Nam Nguy- en, Lu Gan and Trac D. Tran. Distributed compressed video sensing [ C ] , in Proceedings of the International Conference on Image Processing, Cairoa, Egypt, 2009 - 1393-1396.
  • 6E. Candes, J. Romberg, Sparsity and incoherence in com- pressive sampling [ J ], Inverse Prob., 2007, 23 ( 3 ) : 969-985.
  • 7E. Candes and J. Romberg, Robust signal recovery from in- complete observations[ C ], in Proc. ICIP ,2006 : 1281-1284.
  • 8T. T. Do, L. Gan, N. Nguyen, efficient compressive sampling matrices [ J ] , IEEE Trans. and T. D. Tran, Fast and using structurally random Signal Processing, 2012.(60) :139-154.
  • 9Lu Gan, Thong T. Do and Trac D. Tran, Fast compressive imaging using scrambled block hadamard ensemble [ C ] , in Proceedings of European Signal Processing Conf, Switz- erland, 2008.
  • 10L. Gan, Block compressed sensing of natural images [ C ] , in Proceedings of the International Conference on Digital Signal Processing, Cardiff, UK, 2007 : 403 -406.

共引文献17

同被引文献29

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部