期刊文献+

基于K-PSO聚类算法和熵值法的滑坡敏感性 被引量:6

Landslide Sensitivity Based on K-PSO Clustering Algorithm and Entropy Method
下载PDF
导出
摘要 引入K-PSO聚类算法和熵值法,建立滑坡敏感性分析模型.选取旭龙水电站库区22处典型滑坡作为研究对象,确定8个主要影响因子:岩体结构、斜坡结构、断层距离、变形迹象、坡体高度、平均坡度、诱发地震、淹没比例.利用熵值法确定影响因子权重值分别为0.152,0.178,0.035,0.106,0.106,0.169,0.193和0.061.采用K-PSO算法对滑坡进行敏感性划分,结果表明,该库区22处滑坡有8处为轻度敏感,9处为中度敏感,4处为重度敏感和1处极度敏感.将评价结果与现场实际调查情况对比分析知,22处滑坡的敏感度水平与现场实际发育情况具有较好的一致性,该方法对旭龙水电站库区滑坡敏感性评价具有良好的指导作用. The K-PSO clustering algorithm and entropy method were introduced to establish a sensitivity analysis model for landslide.The 22 typical landslides located in Xulong hydropower station reservoir area were investigated.Eight major factors including rock mass structure,slope structure,fault distance,signs of deformation,slope height,average gradient,induced earthquake and submerged ratio were determined for landslide sensitivity analysis.The weights of major factors determined by the entropy method are 0.152,0.178,0.035,0.106,0.106,0.169,0.193,0.061,respectively.Sensitivity analysis results based on K-PSO clustering algorithm showed that among the 22 landslides,8 landslides are evaluated as low sensitive,9 as moderate,4 as severely sensitive and one as extremly sensitive.Compared with the in-situ observations,the evlauated level of sensitivity of the 22 landslides agree very well with the actual development of the landslides.The proposed K-PSO method is effective for landslide sensitivity analysis in Xulong hydropower station reservoir area.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期571-575,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金重点资助项目(41330636) 吉林大学研究生创新基金资助项目(2016208)
关键词 熵值法 滑坡 K-PSO 聚类模型 敏感性 entropy method landslide K-PSO clustering model sensitivity
  • 相关文献

参考文献4

二级参考文献73

  • 1肖伟,黄丹,黎华,崔振昂,蒙格平.地质灾害气象预报预警方法研究[J].地质与资源,2005,14(4):274-278. 被引量:21
  • 2匡乐红,徐林荣,刘宝琛.组合赋权法确定地质灾害危险性评价指标权重[J].地下空间与工程学报,2006,2(6):1063-1067. 被引量:64
  • 3王纯祥,白世伟,江崎哲郎,三谷泰浩.基于GIS泥石流二维数值模拟[J].岩土力学,2007,28(7):1359-1362. 被引量:20
  • 4QING Shen. Attribute reduction of multi-valued information system based on conditional information entropy[C]//Proceedings of IEEE International Conference on Granular Computing. Beijing: Science Press, 2008: 562- 566.
  • 5ZENG Huang-Lin, XIAO hui-Zeng. Redundant data processing based on rough-fuzzy approach[J]. Rough Sets and Knowledge Technology, 2006, 20(3): 156- 161.
  • 6阙金卢.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学,2007.
  • 7SAATY THOMAS L. Applications of analytical hierarchies [J]. Mathematics and Computers in Simulation, 1979, 21(1): 1 -20.
  • 8PAWLAK ZDZISLAW. Rough classification [J]. International Journal of Man-machine Studies, 1984, 20(5): 469-483.
  • 9王志旺,李端有,王湘桂.证据权法在滑坡危险度区划研究中的应用[J].岩土工程学报,2007,29(8):1268-1273. 被引量:52
  • 10Guzzetti F, Carrarra A, Cardinali M, et al. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 1999, 31:181-216.

共引文献214

同被引文献66

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部