期刊文献+

一种改进的支持向量机模型研究 被引量:2

Research on an improved support vector machine model
下载PDF
导出
摘要 传统的支持向量机无法充分、有效地检测出类间重叠区域中的少数实例,也无法对不平衡的数据集作出合理分类,而类的重叠分布和不平衡分布在复杂数据集中是常见的.因而,它们对支持向量机的分类性能产生负面影响.基于此,提出了一种利用距离度量代替支持向量机松弛变量的改进模型.在一定程度上解决了支持向量机处理复杂数据集中类间重叠和不平衡的问题.最后,利用合成数据集和UCL数据库中的数据集的实验验证了该算法的先进性. Traditional support vector machines can not sufficiently and effectively detect the instance of the minority class in the overlap region and can not make a reasonable classification of the imbalanced data sets.However,the overlapping and imbalanced of the classes are common in complicated data sets.As a result,they have a negative impact on the classification performance of support vector machines.Based on this,an improved model is proposed to replace the slack variables of support vector machine based on distance measure.To a certain extent,it solves the problem that the support vector machine is dealing the overlapping and imbalanced of the classes in complicated data sets.Finally,the advanced nature of the algorithm is verified by the experimental results of the data set in the synthetic data set and the UCL database.
出处 《陕西科技大学学报(自然科学版)》 2017年第2期189-194,共6页 Journal of Shaanxi University of Science & Technology
基金 山西省自然科学基金项目(2015011040)
关键词 支持向量机 重叠 不平衡 松弛变量 距离度量 support vector machine overlapping imbalanced slack variable distance measure
  • 相关文献

参考文献1

二级参考文献8

  • 1偰娜.第三方支付平台服务满意度研究[J].海南金融,2014(5):66-69. 被引量:2
  • 2JIA P, ZHANG C, HE Z. A new sampling approach for classifica- tion of imbalanced data sets with high density[ C]// Proceedings of the 2014 Intemational Conference on Big Data and Smart Compu- ting. Piscataway: IEEE, 2014:217-222.
  • 3ZHAO S-J, ZHANG H-P, LI L. A new algorithm for imbalanced datasets in presence of oufliers and noise[ C]// Proceedings of the 2012 8th International Conference on Natural Computation. Piscat- away: IEEE, 2012:. 30 - 34.
  • 4KRIMINGER E, PRINCIPE J C, LAKSHMINARAYAN C. Nearest neighbor distributions for imbalanced classification[ C]// Proceed- ings of the 2012 International Joint Conference on Neural Networks. Piscataway: IEEE, 2012:1-5.
  • 5HABABOU M, CHENG A Y, FALK R. Variable selection in the credit card industry [EB/OL]. [2014-12-01]. http://www, lex- jansen, com/nesng/nesug06/an/da23, pdf.
  • 6张晓.基于密度聚类算法的异常检测[J].伊犁师范学院学报(自然科学版),2010,4(4):52-54. 被引量:6
  • 7陈坚豪.第三方支付公司推“盗号补偿”[J].金融科技时代,2012,20(10):15-15. 被引量:1
  • 8蒋盛益,苗邦,王连喜.面向不平衡数据的特征加权聚类算法[J].小型微型计算机系统,2013,34(8):1809-1812. 被引量:4

共引文献1

同被引文献37

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部