期刊文献+

干热岩生产井温度场的热力计算 被引量:5

Calculation of Temperature Field for Hot Dry Rock Production Wells
下载PDF
导出
摘要 为了研究干热岩生产井产液的保温增效问题,根据北京市某生产井井身结构特点,建立了井筒传热计算模型,利用计算流体力学(computational fluid dynamics,CFD)软件对该生产井探测数据进行了核实,并在此基础上提出了对干热岩生产井产液温度场影响因素的分析.结果表明:生产井三开段底部产水源的产液温度最高,热储量大,可使井口出口温度由333.1 K提高到342.3 K;同等工程参数下,泵管下入深度增加到400 m时,可使产液井口出口温度提高到337.6 K,且下入深度越大,产液出口温度越高;产液产速越大,生产时间越少,减少了产液热能损失,产液出口温度变大;相同泵管深度条件下,保温材料泵管产液出口温度比常规材料泵管高出2 K,可提高生产效益. To study the thermal efficiency of hot dry rock production wells producing fluid,according to the structural characteristics of the well depth of a Beijing production wells, the wellbore heat transfer calculation model was established, which verified the geothermal well detection data by using computational fluid dynamics( CFD ) software. And on the basis of above research,the analysis of the factors was proposed which affect production well fluid temperature field. Results show that the temperature of the water produced at the bottom of the production well three open section is highest of all, and the heat storage capacity of the water is very big,which makes the outlet temperature of the wellhead increases from 333. 1 K to 342. 3K ; under the same engineering parameters,w h e n the depth increases to 400 m,it makes the wellhead outlet temperature increase to 337. 6 K,and the deeper the depth is,the higher the outlet temperature of the liquid producing will b e ; as improve produced fluid production rate, the shorter production time and heat loss, the larger outlet temperature of liquid producing; under the same condition pump pipe depth,outlet temperature of the liquid producing for heat preservation material pump pipe is 2 K higher than convention pumppipe material,which improve the production efficiency.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2017年第4期644-648,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(51306005)
关键词 干热岩 地热能 生产井 温度场 hot dry rock geothermal energy production well temperature field
  • 相关文献

参考文献7

二级参考文献49

  • 1胡圣标,汪集旸.中国东南地区地壳生热率与地幔热流[J].中国科学(B辑),1994,24(2):185-193. 被引量:17
  • 2林日亿,李兆敏,王景瑞,盖平原,侯子旭,栾志勇.塔河油田超深井井筒掺稀降粘技术研究[J].石油学报,2006,27(3):115-119. 被引量:46
  • 3汪集旸,黄少鹏.中国大陆地区大地热流数据汇编(第二版)[J].地震地质,1990,12(4):351-366. 被引量:146
  • 4赵益忠,何钧,沈海超,程远方,王兴隆,梁启明.长封固段固井套管热应力分析[J].钻采工艺,2007,30(4):109-111. 被引量:6
  • 5Ramey H J Jr. Wellbore heat transmission [J]. Journal of Petroleum Technology, 1962, 14(4): 427-435.
  • 6Willhite G P. Over-all heat transfer coefficients in steam and hot water injection wells [J]. Journal of Petroleum Technology, 1967, 19 (5): 607- 615.
  • 7Herrera J O, Btrdwell B F, Hanzllk E J, et al. Wellbore heat losses in deep steam injection wells [C]. SPE California Regional Meeting, San Francisco, California, April 12-14, 1978. doi: 10.2118/7117-MS.
  • 8Shiu K C, Beggs H D. Predicting ternprature in flowing oil wells [J]. Journal of Energy Resources Technology, 102(1): 1-11.
  • 9Sagar R K, Doty D R, Schidt Z, et al. Predicting temperature profiles in a flowing well[J]. SPE Production Engineering, 1992, 6(4): 441-447.
  • 10Kabir C S, Hasan A R, Heat transfer during two-phase flow in wellbore, part I formation temperature [C]. SPE Annual Technical Conference and Exhibition, Dallas, Texas, Oct 6-9, 1991. doi: 10.2118/22866-MS.

共引文献152

同被引文献140

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部