摘要
在有效质量近似的框架内,利用变分法求解三角形对称罗森-莫尔斯势中砷化镓量子点的薛定谔方程.就杂质结合能作为势阱参数d、V_0,压力P,温度T和杂质位置zi的函数进行了计算,结果表明,杂质结合能深受d、V_0、P、T和zi的影响,在低维半导体量子系统的实验研究中,压力P和温度T应该被考虑在内.
Wi thin the framework of the effective mass approximat ion, the Schrodinger equation in a GaAs sym-metrical ly trigonometric Rosen-Morse potential quantum dot is solved by means of a variational approach. The impurity binding energy has been calculated as a function of parameters of potential d, V0 , pressure P , temper-ature T and the impur ity position zt. It is found that the impurity binding energy is strongly affected by d, V0 , P , T and zt. It is also worthwhile to point out that pressure P and temperature T should be considered in the ex-perimental study of low-dimensional semiconductor quantum system.
出处
《广州大学学报(自然科学版)》
CAS
2017年第1期36-41,共6页
Journal of Guangzhou University:Natural Science Edition
基金
Supported by the National Natural Science Foundation of China(61178003,61475039)
Guangdong Provincial Department of Science and Technology(2012A080304010,S2012010010115,2012A080304005)
Guangzhou Municipal Department of Education(12A005S)
关键词
杂质
量子点
压力
温度
impurity
quantum dot
pressure
temperature