摘要
提出了一种新的基于单角毛细管的模型。在该模型中,当非润湿相注入已经饱和润湿相的毛细管中时,不混溶的两相的分布是由一个特定的阈值压力所确定。利用Young-Laplace方程,推导和分析了不同管内流体间界面的曲率和弯液面的形状;并通过叠加单角毛管模型生成不同多边形毛管模型,研究边的多边形数和流体分布之间的关系,以及等边多边形毛管中润湿相的饱和度。在单角毛细管的基础上,研究了角的位置对于润湿相分布的影响;并分析了流体界面在角的相互影响的五个阶段分布特点。
A new basic single corner capillary model is presented. In this model,the distribution of immiscible fluids is determined by a particular threshold pressure. Meanwhile,the interface curvature and profile of the meniscus of the fluids in different tubes can be derived and analyzed. There are various polygons obtained by superposing repeatedly the basic single corner capillary model. The relationship between the number of edges of polygons and the fluids' distribution,and the saturation of the wetting fluid in equilateral polygon tubes is studied.Furthermore,the interaction of the corners is discussed,for the first time,to reveal the five stages of the interfaces in different corners combinations. The dimensionless of the interface curvature and the radius of the circle portion are considered to extend the conclusion to the similar cross-sectional capillaries with different sizes.
出处
《科学技术与工程》
北大核心
2017年第9期107-112,共6页
Science Technology and Engineering
基金
国家自然科学基金(51274225
51204198)
博士点基金(20110133110007)资助
关键词
单角毛细管
MS-P
饱和度
弯液面
润湿相
single corner capillary
MS-P
saturation
interface
wetting phase