摘要
针对传统蛋白质模型质量评估没有考虑同源信息的问题,提出了一种基于LS-SVM评估蛋白质模型质量的方法。综合模拟退火(simulated annealing,SA)算法跳出局部最优解和粒子群(particle swarm optimization,PSO)算法收敛速度快的特点,提出了模拟退火粒子群(SAPSO)算法。利用SAPSO算法来优化LS-SVM参数C和γ,最后得到最优模型来评估蛋白质模型质量。实验结果表明,经SAPSO优化LS-SVM参数所得到的模型评估预测误差较小,且预测值更稳定。
As the traditional methods evaluated the quality of models without considering the source information,this paper designed a new algorithm to access the quality of a protein structure based on least squares support vector machines. Firstly,considering the characteristics that simulated annealing( SA) algorithm could jump out of the local optimal solution and that particle swarm optimization( PSO) algorithm had a fast convergence speed,it developed a simulated annealing particle swarm optimization( SAPSO) algorithm; the next it optimized the parameters of LS-SVM that included C,γ by SAPSO algorithm; lastly the algorithm built an optimal model,which used to predict the quality score of a protein structure model. The experimental results show that the model of SAPSO algorithm optimized the parameters has less error in predicting protein structures and its prediction is more stable.
出处
《计算机应用研究》
CSCD
北大核心
2017年第5期1346-1348,1378,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61173071)
河南省高校创新人才支持计划项目(2012HASTIT011)
关键词
蛋白质
模型质量
LS-SVM
模拟退火粒子群
参数优化
protein
model quality
LS-SVM
simulated annealing particle swarm optimization(SAPSO)
optimize parameters