期刊文献+

HBase中基于时空特征的监测视频大数据关联查询研究 被引量:4

Research on associated query of monitoring video big data based on spatio-temporal characteristics in HBase
下载PDF
导出
摘要 针对传统的时空索引构建、维护困难且实时查询效率低等问题,提出基于HBase的时空索引构造方法。该方法采用HBase作为监测视频大数据时空特征索引结构,通过Z填充曲线对空间特征进行降维存储,并利用时间、空间与属性特征之间的关联及依赖规则来安排rowkey索引键,可有效解决传统的时空索引构建、维护困难的缺陷。针对传统的时空索引实时查询效率低的问题,提出了基于Z曲线的时空关联查询算法。该算法对查询空间计算Z值范围和建立空间划分子集,利用划分后的时空特征进行列索引查询得到候选数据集并反查HBase索引表完成关联查询。实验结果表明,与传统的R树索引算法相比,提出的基于HBase的时空索引构造方法索引插入效率更高,提出的基于Z曲线的时空关联查询算法能够快速高效地处理时空关联查询。 Aiming at solving problems like the difficulties in bui lding and maintaining of the traditionaand the inef ficiency of real-time query, this paper first proposed a new building method of spatio-temporal index based on HBase. By using HBase as the spatio-temporal features index structure of monitoring video big data,using Z-filling curve tofulfill the dimension reduction and storage of spatio-temporal features,and using the associated relations and rule between time,space and at tributive characters to arrange the rowkey index key,these disadvantages like the traditional spatio-temporal index5 s bui lding and maintaining would be overcome eff iciently. In addi ttraditional space-time index low query efficiency issues in real time,this paper further proposed spatio-temporal query algorithm based on the Z curve , which could calculate Z value ranges and establish space to subset partiocandidate data sets would be obtained by using the spatio-temporal features got from the first step to haand next the related query would be realized by pegging the HBase index table. Experimental compared with the conventional R-tree indexing algorithm, the spatio-temporal index building method based on posed above has higher insertion index efficiency and the association Z curve space-time query-based algorithm propoq uickly and efficiently deal with spatio-temporal correlated queries.
出处 《计算机应用研究》 CSCD 北大核心 2017年第5期1423-1427,1432,共6页 Application Research of Computers
基金 国家水体污染控制与治理科技重大专项资助项目(2013ZX07503-001-06) 湖北省重大科技创新计划项目(2013AAA020)
关键词 云存储 大数据 联合查询 时空特征 cloud storage big data associated quer spatio and temporal characteristic
  • 相关文献

参考文献8

二级参考文献88

  • 1桂林.R-tree空间索引方法的优化研究[J].武汉理工大学学报,2009,31(2):97-99. 被引量:3
  • 2梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 3廖巍,熊伟,景宁,陈宏盛,钟志农.支持频繁更新的移动对象混合索引方法[J].计算机研究与发展,2006,43(5):888-893. 被引量:10
  • 4董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:98
  • 5兰小机,刘德儿,闾国年.GML空间数据索引机制研究[J].计算机工程,2007,33(6):92-94. 被引量:8
  • 6翻腾.基于R-树空间索引系统的研究与应用[D].北京邮电大学,2003.
  • 7BECKMANN N, KRIEGEL H-P, SCHNEIDER R, et al. The R* - tree: An efficient and robust access method for points and rectangles [J]. ACM SIGMOD Record, 1990, 19(2):322-311.
  • 8BOHM C , BERCHTOLD S , KEIM D A . Searching in high -dimensional spaces: Index structures for improving the performance of Multimedia databases[ J]. ACM Computing Surveys, 2001, 33 (3) : 322 -373.
  • 9ROUSSOPOULOS N, KELLEY S, VINCENT F. Nearest neighbor queties[ C]// Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1995:71 -79.
  • 10HJALTASON G R, SAMET H. Distance browsing in spatial databases[ J]. ACM Transactions on Database Systems, 1999, 24(2) : 265 -318.

共引文献920

同被引文献50

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部