期刊文献+

基于HTTP流量的安卓应用敏感信息泄露检测 被引量:6

Android application sensitive information leakage detection based on HTTP traffic
下载PDF
导出
摘要 Android应用日益流行,但是Android广告库存在收集用户敏感信息(如IMEI等)并通过网络发送的行为。因此,提出了使用基于HTTP数据包目的和内容距离的层次化聚类算法的检测方法来检测敏感信息的泄露。该方法首先对HTTP数据包的目的和内容距离进行聚类,随后从聚类的结果中生成特征签名,并使用这些特征签名来检测是否存在敏感信息泄露。实验表明提出的检测方法可以检测到95%的敏感信息泄露,并只有2.7%的漏判率和2.3%的误判率。 Android applications become popular,but its advertisement libraries can collect a user's sensitive information( e.g.,IMEI) and transmit it across the network. Therefore,this paper proposed a clustering method based on the HTTP packet destination and content distances to detect sensitive information leakage from Android apps. This method first clustered destination and content distance of HTTP packets. Then,it generated signatures from clustering results and used them to detect sensitive information leakage. In the experiment,this approach accurately detectes 95% of the sensitive information leakage and produces 2. 7% false negative results,and 2. 3% false positive results.
出处 《计算机应用研究》 CSCD 北大核心 2017年第5期1515-1519,1535,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61173168) 广东省教育厅资助项目(粤教高函[2012]54号-A12) 湖南省教育厅科研项目优秀青年项目(16B085) 湖南省科技重点研发项目(2016JC2074) 网络侦查技术湖南省重点实验室开放研究基金项目(2016WLZC012)
关键词 敏感信息 Android智能手机 广告库 HTTP数据包 sensitive information Android smartphone advertisement library HTTP packet
  • 相关文献

参考文献1

二级参考文献14

  • 1杨欢,张玉清,胡予濮,刘奇旭.基于权限频繁模式挖掘算法的Android恶意应用检测方法[J].通信学报,2013,34(S1):106-115. 被引量:47
  • 2La Polla M, Martinelli F, Sgandurra D. A survey on security for mobile devices [ J ]. IEEE Communications Surveys & Tutorials, 2012, 15(1): 446-471.
  • 3Grace M, Zhou Y J, Zhang Q, et al. RiskRanker: scalable and accurate zero-day Android malware detection [ C ] // Proceedings of the lOth International Conference on Mobile Systems, Applications, and Services (MobiSys' 12 ). Low Wood Bay, Lake District, UK. 2012 : 281- 294.
  • 4Rastogi V, Chen Y, Jiang X X. DroidChameleon: evaluating Android anti-malware against transformation attacks [ C ]// Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security. Hangzhou, China; ACM. 2013 : 329- 334.
  • 5Zhou W, Zhang X W, Jiang X X. AppInk: watermarking android apps for repackaging deterrence [ C ]////Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security. Hangzhou, China; ACM. 2013: 1-12.
  • 6Zhou Y J, Jiang X X. Detecting passive content leaks and pollution in android applications [ C ] // Proc of the 20th Annual Network and Distributed System Security Symposium (NDSS13). San Diego, California, USA. 2013 : 1- 16.
  • 7Suarez-Tangil G, Tapiador J E, Peris-Lopez P, et al. Dendroid: a text mining approach to analyzing and classifying code structures in Android malware families[J].Expert Systems with Applications, 2014, 41(4) : 1 104- 1 117.
  • 8Denning D E. A lattice model of secure information flow [ J]. Commun ACM, 1976, 19(5) : 236-243.
  • 9Tsai C R, Gligor V D, Chandersekaran C S. On the identification of covert storage channels in secure systems [ J]. Software Engineering, IEEE Transactions on, 1990, 16 (6) : 569-580.
  • 10刘潇逸,崔翔,郑东华,李善.一种基于Android系统的手机僵尸网络[J].计算机工程,2011,37(22):1-4. 被引量:7

共引文献10

同被引文献47

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部