摘要
为解决旅游景区的交通拥堵和空气污染问题,基于游客选择偏好,构建旅游景区停车换乘(Park and Ride,P&R)设施选址优化模型,进而优化P&R设施选址和景区巡游巴士的巡游线路.模型以改善旅游景区空气污染和降低P&R系统运营成本为目标.利用大连市太阳沟景区进行实证研究,设计一个双层的遗传算法对模型进行求解.结果表明,基于游客选择行为的P&R系统能够有效地改善旅游景区的交通拥堵和空气污染问题.
In order to solve the traffic congestion and air pollution problem around tourist attractions, based on tourists ’ choice preference, an optimization model of Park and Ride (P&R) facility location in tourist attractions is built to optimize the P&R facility location and the cruise route of shuttle buses. The model aims to minimize the exhaust pollution and the operation cost of P&R system. The Taiyanggou tour-ist attraction in Dalian is selected to carry out the case study, and a two-layer genetic algorithm is de-signed to solve the model. The results indicate that P&R system based on the tourists, choice preference can efficiently alleviate the traffic congestion and air pollution problem around tourist attractions.
出处
《上海海事大学学报》
北大核心
2017年第1期57-61,共5页
Journal of Shanghai Maritime University
基金
天津市科学技术普及项目(15KPXM01SF036)
关键词
旅游景区
停车换乘(P&R)
多目标优化
选择行为
tourist attraction
Park and Ride (P&R)
multi-objective optimization
choice behavior