期刊文献+

Molecular Dynamics Simulation of Antipolyelectrolyte Effect and Solubility of Polyzwitterions

原文传递
导出
摘要 In this work, by using coarse-grained molecular dynamics simulations, we found that poly(2-metha-cryloyloxyethyl phosphorylcholine)(PMPC) showed a strong solubility and a so-called antipolyelectrolyte effect(APE)in water. In contrast, obvious aggregations but no APE were found in n-butyl-substituted choline phosphatepolymers(PMBP) solutions. The underlying mechanisms for different solution behaviors of PMPC and PMBP wereinvestigated in detail. Our results indicate that the presence of butyl groups in PMBP enhances both the electrostaticinteractions and the hydrophobicity of PMBP molecules in the system. Both factors were found to contribute to theformations of aggregates in the PMBP system. Further researches revealed that hydrophobicity arising from the butylgroup plays a more important role than electrostatic interactions in inducing the PMBP aggregation. In addition, thestrong hydrophobicity in PMBP was found to be responsible for the absence of APE. These results are expected tocontribute to a better understanding and a better design of the solution properties of polyzwitterions.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第2期261-267,共7页 高等学校化学研究(英文版)
分类号 O [理学]
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部