期刊文献+

Oxygen diffusion in a spherical cell subject to nonlinear Michaelis-Menten kinetics: Mathematical analysis by two exact methods

Oxygen diffusion in a spherical cell subject to nonlinear Michaelis-Menten kinetics: Mathematical analysis by two exact methods
原文传递
导出
摘要 A nonlinear model representing oxygen diffusion accompanied by the Michaelis-Menten consumption kinetics inside a spherical cell is solved analytically by the differential transform method (DTM) and the modified Adomian decomposition method (MADM). A perfect agreement between the literature data and the results from the proposed
出处 《International Journal of Biomathematics》 2017年第2期171-186,共16页 生物数学学报(英文版)
  • 相关文献

参考文献3

二级参考文献28

  • 1G. Adomian, Nonlinear Stochastic Operator Equations (Academic, Orlando, FL, 1986).
  • 2G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer Academic, Dordrecht, 1994).
  • 3G. Adomian and R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl. 91 (1983) 39- 46.
  • 4G. Adomian and R. Rach, Anharmonic oscillator systems, J. Math. Anal. Appl. 91 (1983) 229 -236.
  • 5J. S. Duan, Recurrence triangle for Adomian polynomials, Appl. Math. Comput. 216 (2010) 1235 -1241.
  • 6J. S. Duan, An efficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput. 217 (2010) 2456 -2467.
  • 7J. S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput. 217(2011) 6337-6348.
  • 8J. S. Duan and R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher-order differential equations, Appl. Math. Comput. 218 (2011) 4090-4118.
  • 9J. S. Duan, R. Rach, D. Bleanu and A. M. Wazwaz, A review of the Adomian decom- position method and its applications to fractional differential equations, Commun. Frac. Calc. 3(2) (2012) 73-99.
  • 10J. S. Duan, R. Rach and A. M. Wazwaz, Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems, Int. J. Nonlinear Mech. 49 (2013) 159-169.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部