期刊文献+

CPS框架下基于决策者偏好信息的NPS-CSS算法

NPS-CSS Algorithm Based on Preference Information of Decision Makers in CPS Framework
下载PDF
导出
摘要 在研究钢铁企业面临的最优化问题中,提出了一种新的针对多目标优化问题的求解算法——基于决策者偏好信息的NPS-CSS算法,同时结合鞍钢球团在链篦机-回转窑的预热、焙烧过程,对该算法的实用性和高效性进行了验证。为解决多目标优化问题提供了一种可行性方案,具有较强的有效性和实用性。 The new algorithm of the NPS-CSS based on the preference information of decision makers was proposed aiming at the problem of the multi-objective optimization in studying the optimization problem which the iron and steel industry was confronted with. And then the practicality and high efficiency of the new algorithm were verified combining with the actual preheating process and roasting processes of the pellets in the chain grate machine-rotary kiln in Ansteel. The algorithm has a relatively high efficiency and good practicality which might offer a feasible solution for the multi-objective optimization problem.
作者 陈琳 孟婷婷 Chen Lin Meng Tingting(Information Industry Co., Ltd. of Ansteel Group Corporation, Anshan 114003, Liaoning, China Secondary Vocational and Technique School of Liaoyang, Liaoyang 111200, Liaoning, China)
出处 《鞍钢技术》 CAS 2017年第2期32-36,共5页 Angang Technology
关键词 工业4.0 多目标优化 决策者偏好信息 NPS-CSS 模糊偏好排序 industry 4.0 mufti-objective optimization preference information of decision- makers NPS-CSS fuzzy preference sequencing
  • 相关文献

参考文献1

二级参考文献16

  • 1吴国华,潘德惠.一种消费者品牌偏好的模糊排序方法[J].系统工程理论与实践,2004,24(9):28-32. 被引量:15
  • 2COELLO C C A, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
  • 3BERGH van den F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J].Information Sciences,2006,176(8):937-971.
  • 4BERGH van den F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):225-239.
  • 5NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A dynamic niching particle swarm optimizer for multi-modal optimization[J].Proceeding of the IEEE CEC,2008,41(8):26-32.
  • 6SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[C]//Proc of Congress on Evolutionary Computation. 2004: 325-331.
  • 7TSAI C F, TSAI C W, WU Han-chang, et al. ACODF: a novel data clustering approach for data mining in large databases[J].Journal of Systems and Software,2004,73(1):133-145.
  • 8TSOU D, MACNISH C. Adaptive particle swarm optimization for high-dimensional highly convex search spaces[C]//Proc of IEEE Congress on Evolutionary Computation. 2003:783-789.
  • 9UJJIN S, BENTLEY P J. Particle swarm optimization recommender system[C]//Proc of IEEE Swarm Intelligence Symposium.2003:124-131.
  • 10MA Yun-qian, CHERKASSKY V. Multiple model classification using SVM-based approach[C]//Proc of International Joint Conference on Neural Networks.2003:1581-1586.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部