摘要
互联网和大数据技术的融合让个体生理数据分析成为可能,并进一步推动个体健康风险量化,本文在此背景下,探讨人工智能与保险融合的新路径,提出了以生理年龄作为个体健康的风险量化指标,进而作为定价基础的新模式。本研究根据保险特征,优化深度学习技术,通过分析人体老化的生理特征,建立了基于手背纹理照片的生理年龄评价模型,在大量数据的支持下,可以获得稳健、精准的生理年龄定量评价结果。本文还讨论了以深度学习为代表的人工智能技术与保险融合的模式,提出了可能的结合点以及对应的比较结果。鉴于生理年龄可以更充分反映投保人的"健康风险"信息,论文认为该模式具有很好的应用价值,并通过分析现状,认为当前是保险公司建立"人工智能大脑"的关键时期。
The convergence of Internet and bid data technology makes individual biological dada analysis possible, and further facilitates the quantification of individual heath risk. Under this background, the paper provided a new approach to apply artificial intelligence into the insurance industry, and introduced biological age as a personal health risk quantification parameter, and basis for pricing the insurance policy in the new model. In the paper, the deep learning technique was used to analyze the biological characteristics of human aging, and a biological age ap- praisal model was created based on the photo of the texture of the back of hand. With the support of a large quantity of data, a steady and accurate appraisal can be obtained. The paper also elaborated on the ways to introduce artificial intelligence into the insurance industry, and pointed out the possible points for their integration and corresponding results. Since biological age can fully represent the applicant' s health risk information, this model should be of a good value for the industry. And at the current stage, it is crucial for insurance companies to build their "artificial intelligent brains" now.
作者
张宁
ZHANG Ning(Central University of Finance and Economics ,China Institute for Actuarial Science ,Beijing 100081)
出处
《保险研究》
CSSCI
北大核心
2017年第2期50-62,共13页
Insurance Studies
基金
北京市哲学社会科学基金项目(编号:15JGC153)
教育部人文社科项目(编号:16YJCZH148)
教育部人文社会科学重点研究基地重大项目(编号:16JJD790060)
数据灯塔(Data Lighthouse)计划
关键词
生理年龄
精算定价
人工智能
大数据
深度学习
biological age
actuarial pricing
artificial intelligence
big data technique
deep learning