期刊文献+

基于生理年龄的精算定价及人身险应用 被引量:2

Actuarial Pricing Based on Biological Age and Its Applications
原文传递
导出
摘要 互联网和大数据技术的融合让个体生理数据分析成为可能,并进一步推动个体健康风险量化,本文在此背景下,探讨人工智能与保险融合的新路径,提出了以生理年龄作为个体健康的风险量化指标,进而作为定价基础的新模式。本研究根据保险特征,优化深度学习技术,通过分析人体老化的生理特征,建立了基于手背纹理照片的生理年龄评价模型,在大量数据的支持下,可以获得稳健、精准的生理年龄定量评价结果。本文还讨论了以深度学习为代表的人工智能技术与保险融合的模式,提出了可能的结合点以及对应的比较结果。鉴于生理年龄可以更充分反映投保人的"健康风险"信息,论文认为该模式具有很好的应用价值,并通过分析现状,认为当前是保险公司建立"人工智能大脑"的关键时期。 The convergence of Internet and bid data technology makes individual biological dada analysis possible, and further facilitates the quantification of individual heath risk. Under this background, the paper provided a new approach to apply artificial intelligence into the insurance industry, and introduced biological age as a personal health risk quantification parameter, and basis for pricing the insurance policy in the new model. In the paper, the deep learning technique was used to analyze the biological characteristics of human aging, and a biological age ap- praisal model was created based on the photo of the texture of the back of hand. With the support of a large quantity of data, a steady and accurate appraisal can be obtained. The paper also elaborated on the ways to introduce artificial intelligence into the insurance industry, and pointed out the possible points for their integration and corresponding results. Since biological age can fully represent the applicant' s health risk information, this model should be of a good value for the industry. And at the current stage, it is crucial for insurance companies to build their "artificial intelligent brains" now.
作者 张宁 ZHANG Ning(Central University of Finance and Economics ,China Institute for Actuarial Science ,Beijing 100081)
出处 《保险研究》 CSSCI 北大核心 2017年第2期50-62,共13页 Insurance Studies
基金 北京市哲学社会科学基金项目(编号:15JGC153) 教育部人文社科项目(编号:16YJCZH148) 教育部人文社会科学重点研究基地重大项目(编号:16JJD790060) 数据灯塔(Data Lighthouse)计划
关键词 生理年龄 精算定价 人工智能 大数据 深度学习 biological age actuarial pricing artificial intelligence big data technique deep learning
  • 相关文献

二级参考文献26

  • 1Cairns, A. J. G, Blake, M. , Dowd, K. , 2006. Pricing death : Frameworks for the valuation and securitization of mortality risk. ASTIN Bulletin ,36:79 - 120.
  • 2Chin-Hsiung Loh,Tsu-Chiu Wu and Norden E. Huang,2001. Application of the Empirical Mode Decomposi- tion-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Respon- ses. Bulletin of the Seismological Society of America,91 (5) : 1339 - 1357.
  • 3Dahl,M. ,Moller,T. ,2006. Valuation and hedging of life insurance risks with systematic mortality risk. In- surance : mathematics and economics ,35 : 193 - 217.
  • 4De Jong, P. , Tickle, L. ,2006. Extending the Lee-Carter model of mortality projection. Mathematical popula- tion studies, 13 : 1 - 18.
  • 5Emms,P. H. C. and Haberman ,S. ,2008. Income drawdown schemes for a defined contribution pension plan, Journal of Risk and Insurance,75 (3):739 -761.
  • 6Felipe, A. , Guillen, M. , and Perez-Marin, A. M. , 2002. Resent morality in Spanish population, British Actu- arial Journal ,8:757 - 786.
  • 7Lee, R. D. , Cater, L. R. , 1992. Modeling and forecasting U. S. mortality. Journal of the American Statistical Association,87:659 - 675.
  • 8Lundstrom, H. and Qvist, J. , 2004. Mortality forecasting and trend shifts:an application of the Lee-Carter Model to Swedish mortality data, International Statistical Review,72:37 -50.
  • 9Li, S. , Hardy, M. R. and Tan, K. S. 2009. Uncertainty in mortality forecasting : An extension to the classical Lee-Carter approach. ASTIN Bulletin,39 ( 1 ) :137 - 164.
  • 10N. E. Huang. , 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-sta- tionary time series analysis. Proceedings: Mathematical, Physical and Engineering Sciences, 454 ( 1971 ) : 903 - 995.

共引文献7

同被引文献34

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部