期刊文献+

燃气透平叶型气动与传热的优化设计 被引量:5

Aero-thermal optimization of gas turbine blade airfoil
原文传递
导出
摘要 建立了一个透平叶型气动与传热优化的两步模型.第1步采用解析多项式曲线构造叶片的参数化造型,基于CFD数值模拟,通过正交设计和敏感性分析,优选几何设计参数.第2步采用贝塞尔(Bezier)曲线参数化叶型型线,以总压损失和表面热流加权函数为优化目标,调整叶型型线,获得了气动性能与热负荷较优的叶型.设计案例的结果表明:增加安装角可以降低叶片压力面热负荷;增大叶片前缘直径可以降低前缘滞止点热负荷.调整叶型的表面曲率分布,有可能推迟吸力面的转捩,弱化叶片表面的传热.两步优化法计算量小,收敛性好,具有工程应用价值. A two-step optimization method was presented to improve the aero-thermal characteristics of turbine blade airfoil. The first step was to construct turbine airfoil by polynomial lines. Design parameters were screened by design of experiment (DOE) and factorized sensitive analysis for best performance obtained from CFD simulations. The second step was to optimize airfoil, which was parameterized in Bezier lines for minimum flow loss and surface heat transfer in a weighted objective function. Result of design sample shows that increased stagger angle leads to lowered heat transfer along the pressure side surface, and larger leading edge radius reduces the local heat transfer around stagnation point. Reforming the polynomial shaped airfoil provides possible delay of the transition on the blade suction side surface and reduces whole heat transfer rate. Two-step method has relatively low computation requirement and good convergence, which is valuable for engineering purposes.
作者 杨玉骏 戴韧 王蛟 YANG Yu-jun DAI Ren WANG Jiao(School of Power and Energy, University of Shanghai Science and Technology, Shanghai 200093, China Research Development Department, Shanghai Electric Gas Turbine Company Limited, Shanghai 200240, China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第2期438-445,共8页 Journal of Aerospace Power
基金 国家自然科学基金(51276116)
关键词 叶型优化 平面叶栅 参数化造型 试验设计 降低表面热负荷 airfoil optimization linear cascade parametric geometry design of experiment heat load reduction
  • 相关文献

参考文献2

二级参考文献20

  • 1Mansour M L, Hosseini K M, Liu J S. Assessment of the impact of laminar-turbulent transition on the accuracy of heat transfer coefficient prediction in high pressure turbines[R]. ASME GT2006-90273.
  • 2Bohn D, Bonhoff B, Schonenborn H. Combinedaerodynamic and thermal analysis of a high pressure turbine nozzle guide vane[R]. 5-YOKOHAMA-IGTC-108.
  • 3Hylton L D, Mihelc M S, Turner E R, et al. Analytical and experimental evaluation of the heat distribution over the surfaces of turbine vanes[R]. NASA CR168015, 1983.
  • 4York W D, Leylek J H. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane [R]. ASME GT2003-38551.
  • 5SHENG Chunhua, XUE Qingluan. Aerothermal analysis of turbine blades using an unstructured flow solverU^2NCLE [R]. AIAA 2005-4683.
  • 6Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8) : 269-289.
  • 7Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with SST turbulence model [M]//Hanjalic K, Nagano Y, Tummers M. Turbulence Heat and Mass Transfer 4 . [S. l. ] : Begell House Inc. , 2003.
  • 8Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: Part 1- Model formulation[R]. ASME-GT2004-53452.
  • 9Han J C, Dutta S, Ekkad S. Gas turbine heat transfer and cooling technology [M]. London: Taylor & Francis, 2000.
  • 10Dunn M G. Convective heat transfer and aerodynamics in axial flow turbines[J]. ASME Journal of Turbo-machinery, 2001, 123: 637-686.

共引文献36

同被引文献31

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部