期刊文献+

基于ExCC算法的流数据挖掘研究

Research on Stream Data Mining Based on ExCC Algorithm
下载PDF
导出
摘要 随着现代科学技术的快速发展,出现了诸如无线通信网络的数据、传感器网络的数据、证券交易的数据等的新型数据,即流数据.流数据呈现的特点不同于传统的数据集,其所表现的是数据规模宏大、时序性、数据快速变化等.传统的聚类分析算法对于流数据挖掘已不再具有可行性,因此,本文就ExCC算法对于流数据挖掘的相关问题进行了深入研究. With the rapid development of modern network information technology and science technology,a kind of new data,such as wireless communication network,sensor network,financial stock transaction and so on daily application,has appeared.The characteristics of streaming data presentation are different from traditional data sets,which show the large-scale data,timing,rapid data changes.The traditional clustering algorithm is no longer feasible for streaming data mining,so this paper deeply studies the related problems of stream data mining in ExCC algorithm.
作者 牛晨晨 张昪 周畅 NIU Chen-chen Zhang Bian Zhou Chang(Department of information and engineering, Lanzhou University of Finance and Economics, Lanzhou 730000, Chin)
出处 《洛阳师范学院学报》 2017年第2期55-58,共4页 Journal of Luoyang Normal University
关键词 流数据 聚类分析 ExCC 数据挖掘 streaming data cluster analysis ExCC data mining
  • 相关文献

参考文献5

二级参考文献95

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2张立含,尚福华,姜哲俊.基于流数据挖掘的油田数据库监控系统[J].油气田地面工程,2005,24(6):52-52. 被引量:1
  • 3周晓云,孙志挥,张柏礼,杨宜东.高维数据流子空间聚类发现及维护算法[J].计算机研究与发展,2006,43(5):834-840. 被引量:17
  • 4常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 5Babcock B, Datar M, Motwani R. Sampling from a moving window over streaming data[C]. Eppstein D. Proc of the 13th Annual ACM-SIAM Syrnp on Discrete Algorithms. San Francisco: ACM/SIAM, 2002:633-634.
  • 6Charu C Aggarwal,Han Jiawei, Wang Jianyong,et al.A frame- work for clustering evolving data streams [C]. Proc the 29th VLDB Conference. Berlin: Johann Christoph Freytag, Morgan Kaufmann,2003:81-92.
  • 7Domingos P, Hulten G.Mining high-speed data streams[C]. Proc of the Sixth Intl Conf on Knowledge Discovery and Data Mining,2000:71-80.
  • 8黄磊.流数据挖掘综述.软件学报,2004,15(1).
  • 9Babcock B, Babu S, Datar M,et al,Models and issues in data streams[C].Proc ACM SIGACT-SIGMOD Symp on Principles of Database Systems,2002:1-16.
  • 10Guha S, Mishra N, Motwani R, et al. Clustering data stream[C]//Proceedings of the 41 st Annual Symposium on Foundations of Computer Science. Redondo Beach: IEEE Computer Society, 2000: 359-366.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部