期刊文献+

基于仿真脑磁共振数据的信噪比在医学影像质量量化上的一致性研究 被引量:2

A Consistency Evaluation of Signal-to-Noise Ratio in Medical Image Quality Assessment:A Simulation Study on Human Brain Magnetic Resonance Images
下载PDF
导出
摘要 医学成像过程复杂,且影响成像质量的因素非常多,导致医学影像质量的量化一直非常具有挑战性。信噪比是一种被广泛采用的医学影像质量量化方法,被定义为感兴趣区域的信号均值与背景噪声的标准差的商。它的计算和执行勾画的操作者及勾画的区域密切相关,因此有必要对其一致性进行系统的研究。文章共计使用了324例仿真的磁共振脑影像,分为正常脑和多发性硬化病变两类影像;并将脑脊液区域和白质区域作为感兴趣区域;最后采用Wilcoxon秩和检验来检验操作者间的差异性,并用Pearson相关系数和Spearman秩相关系数来验证感兴趣区域间的一致性。实验结果发现,对相同模态的相同组织区域,不同观察者间的信噪比值没有显著性差异(Wilcoxon秩和检验,P>0.70);对相同模态的相同观察者,Pearson相关系数rp>0.71(P<10^(-5)),而Spearman秩相关系数rs>0.97(P<10-3),即信噪比对磁共振影像质量的评价不受操作者以及感兴趣组织的选择而出现差异。进一步的临床数据验证有利于挖掘信噪比在临床应用中的使用条件和潜在局限。 Medical imaging is a complicated procedure and acquired images are with intrinsic characteristics. As a tool to quantify the image quality, signal-to-noise ratio(SNR) is widely accepted by physicians in clinical situations. It is defined as the quotient of the mean signal intensity in a tissue region of interest and the standard deviation of the signal intensity in a region outside the anatomy of the object imaged. However, insufficient knowledge on its consistency with respect to different observers and tissue regions is known. In this paper, the consistency is studied with 324 simulated MR images of human brain. The consistency of SNR is validated between two observers and between tissues of white matter and cerebral spinal fluid. For the same type of tissues in each modality, Wilcoxon rank sum test suggests no significant difference between two observers(P0.70). For the same modality and observer, SNR between tissues correlates well(Pearson correlation coefficient rp0.71(P10(-5)), and Spearman's rank correlation coefficient rs0.97(P10(-3)). This study indicates that SNR is consistent and robust regarding to different observers and tissues in objective quality assessment of magnetic resonance images. Further research will be carried on clinical images for objective assessment.
出处 《集成技术》 2017年第2期41-48,共8页 Journal of Integration Technology
基金 广东省创新研究团队项目(2011S013) 国家重点研发计划(2016YFC0105102) 深圳市技术攻关项目(JSGG20160229203812944)
关键词 医学影像质量评价 信噪比 磁共振成像 一致性 medical image quality assessment signal-to-noise ratio magnetic resonance imaging consistency
  • 相关文献

参考文献3

二级参考文献14

  • 1Xu Y, Bai T, Yan H, et al. A practical cone-beam CT scalter correction method with optimized Monte Carlo simulations for im age-guided radiation therapy. Phys Med B[ol, 2015, 60 ( 9 ) : 3567-3587.
  • 2Lee H, Xing L, Lee R, et al. Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisi tion of scatter and image information. Med Phys, 2012, 39 (5) : 2386-2395.
  • 3Zhu L, Xie Y, Wang J, et al. Scatter correction for con~beamCT in radiation therapy. Med Phys, 2009, 36 ( 6 ): 2258-2268.
  • 4Niu T, Zhu L. Scatter correction for full-fan volumetric CT using a sta- tionary beam blocker in a single full scan. MedPhys, 2011,38(11):6027- 6038.
  • 5Zheng D, Ford .IC, Lu J, et al. Bow-tie wobble artifact: effect of source assembly motion on cone-beam CT. Med Phys, 2011,38 (5) :2508-2514.
  • 6Fassi A, Schaerer J, Riboldi M, et al. An image-based method to synchronize cone-beam CT and optical surface tracking. J Appl Clin Med Phys, 2015, 16(2) :5152.
  • 7Yan H, Mou X, Tang S, et al. Projection correlation based view interpolation for cone beam CT: Primary fluence restoration in scatter measurement with a moving beam stop array. Phys Med BioL, 2010,55(21 ) : 6353-6375.
  • 8Niu T, Sun M, Star-Lack J, el al. Shading correction for on- hoard cone-beam CT in radiation therapy using planning MrX'T images. Med Phys, 2010,37(10):5395-5406.
  • 9Kowatsch M, Winkler P, Zurl B, et al. Anaiysi.s of image quali- ty and dose calculation accuracy in cone beam CT acquisitions with limited projection data (half scan, half fan) with regard to usability for adaptive radiation therapy treatment planning. Z Med Phys, 2011,21(1):11-18.
  • 10Yang D, Li HH, Goddu SM, el al. CBCT volumetric coverage extension using a pair of complementary circular scans with com- plementary kV detector lateral and longitudinal offsets. Phys Med Biol, 2014,59(21) :6327 6339.

共引文献5

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部