期刊文献+

模拟弹性增长的非线性尺度结构种群模型分析 被引量:2

Analysis of a Nonlinear Size-Structured Population Model with Elastic Growth
原文传递
导出
摘要 分析一类具有弹性增长的非线性尺度结构种群系统模型,个体生死率对密度制约的响应不同.运用耦合上下解方法、比较原理和延拓思想确立了模型非负有界解的存在唯一性;给出了正平衡态的存在性判据和表达式,导出了平衡态的特征方程,获得了稳定性判别准则,在不考虑死亡率的密度制约时还得到了正平衡态稳定性阈值.其结果为种群生存分析、状态逼近和控制问题研究奠定基础. This paper analyzes a class of nonlinear size-structured population model with elastic growth, in which the fertility and mortality have different responses to the density-dependence. The existence of unique nonnegative solution to the model is proved by means of coupled upper and lower solutions and comparison princi- ple. Furthermore, we establish conditions for the existence and stability of positive steady states, and derives the corresponding characteristic equation. For the case of density-independent mortality, we find the threshold of parameters for the stability of nontrivial equilibrium. The results obtained pave a sound way for the investigation of persistence, approximation and control problems.
作者 何泽荣 吴鹏
出处 《系统科学与数学》 CSCD 北大核心 2017年第1期289-303,共15页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11271104)资助课题
关键词 尺度结构 种群模型 弹性增长 适定性 稳定性 Size-structure, population model, elastic growth, well-posedness, stabil-ity.
  • 相关文献

参考文献1

二级参考文献12

  • 1Ebenman B,Persson L. Size-Structured Populations:Ecology and Evolution[M].Berlin/Heidelberg /New York/London:Springer-Verlag,1988.
  • 2Tuljapurkar S,Caswell H. Structured-Population Models in Marine,Terrestrial,and Freshwater Systems[M].New York:Chapman & Hall,1997.
  • 3Cushing J M. An Introduction to Structured Population Dynamics[M].Philadelphia:SIAM,1988.
  • 4Magal P,Ruan S. Structured Population Models in Biology and Epidemiology[M].Berlin/Heidelberg:Springer-Verlag,2008.
  • 5Tucker S L,Zimmerman S O. A nonlinear model of population dynamics containing an arbitrary number of structure variables[J].{H}SIAM Journal of Applied Mathematics,1988,(03):549-591.
  • 6Cushing J M. A size-structured model for cannibalism[J].Theor Popu Biol,1992.347361.
  • 7Dercole F,Niklas K,Rand R. Self-thinning and community persistence in a simple size-structured dynamical model of plant growth[J].{H}Journal of Mathematical Biology,2005.333-354.
  • 8Farkas J Z,Hagen T. Stability and regularity results for a size-structured population model[J].{H}Journal of Mathematical Analysis and Applications,2007.119-136.
  • 9Liu Y,He Z R. Stability results for a size-structured population model with resources-dependence and inflow[J].{H}Journal of Mathematical Analysis and Applications,2009.665-675.
  • 10Fu X,Zhu D. Stability results for a size-structured population model with delayed birth process[J].Discrete and Continuous Dynamical Systems Series B,2013,(01):109-131.

共引文献6

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部