期刊文献+

热镀锌锅内锌液物理场特性的研究 被引量:2

RESEARCH ON THE CHARACTERISTICS OF PHYSICAL FIELD OF MOLTEN ZINC IN HOT DIP GALVANIZING POT
下载PDF
导出
摘要 连续热镀锌生产过程中,锌液的表面会出现大量浮渣,如不及时清除,可能会粘附在热镀锌板表面,导致表面缺陷。渣体的产生与锌液物理场密切相关,同时除渣环节会引起物理场的变化,因此有必要对锌液物理场开展系统性研究。通过构建锌锅及锌液的几何模型,采用标准k-ε双方程湍流模型,获得流域内物理场(速度、温度、浓度场)分布规律,确定漩涡分布特性,以及除渣动作过程中各物理量随时间变化的规律。通过理论计算,可以有效预测锌锅内锌渣的分布规律以及除渣作业危险区,为除渣机器人的设计提供重要理论依据,确保镀锌层质量,提高除渣效率。 A lot of drosses appear on surface of molten zinc in the process of continuous hot dip galvanizing. The drosses, if not cleared in time, adhere to the surface of hot galvanized sheet and lead to surface defect. The production of zinc dross is closely related to the physical fields of molten zinc and dross remove can change of the physical fields, so it is necessary to carry out systematic research on the physical fields. Through the standard k-~ turbulence model and the geometric model of galvanizing pot and molten zinc, the author finds out the distribution regularities of the physical fields ( such as speed, temperature and concentration field) and the laws of these physical quantities changing with time, and determines the distribution characteristics of the vortex. The theoretical calculations can be used to predict the distribution regularity of zinc dross and the danger zone of the dross removing operation, provide important theoretical basis for the design of dross removing robot, and ensure the quality of zinc coating and improve the efficiency of dross removing.
出处 《机械强度》 CAS CSCD 北大核心 2017年第2期404-409,共6页 Journal of Mechanical Strength
基金 国家科技支撑计划项目(2015BAK16B04)资助~~
关键词 热镀锌锅 锌渣 物理场 危险区 镀锌质量 Hot dip galvanizing pot Zinc dross Physical field Danger zone Quality of zinc coating
  • 相关文献

参考文献1

二级参考文献21

  • 1[11]Shim J H,Chung S H,Cho Y W.Prediction of aluminium concentration in molten zinc pot of continuous hot dip galvanising line[J].Iron Making and Steel Making,2002,29(6):454-458.
  • 2[12]O'Dell S,Charles J,Vlot M.Modeling of iron dissolution during hot dip galvanizing of strip steel[J].Materials Science and Technology,2004,20:251-256.
  • 3[13]Sukanta K,Monojit D,Rajesh N.Use of flow barriers to eliminate vortex in the flow field generated in a continuous galvanizing bath[J].ISIJ International,2005,45(7):1059-1065.
  • 4[14]Lee S J,Kim S,Koh M S.Flow field analysis inside a molten Zn pot of the continuous hot-dip galvanizing process[J].ISIJ International,2002,42(4):407-413.
  • 5[15]Ajersch F,Ilinca F,Hetu J F.Simulation of flow in a continuous galvanizing bath:Part Ⅱ.Transient aluminum distribution[J].Metallurgical and Materials Transaction,2004,35B(1):171-178.
  • 6[16]Ilinca F,Hetu J F,Ajersch F.Numerical simulation of Al and Fe distribution during continuous galvanizing operations[J].Iron and Steel Technology,2004,1(4):1067-1078.
  • 7[17]Toussaint P,Ignat L,St-Onge L.Intermetallic particles in continuous hot dip galvanizing baths at aluminum concentrations between 0.1 and 4.5wt%[J].Iron Making and Steel Making,1995,22(6):498-501.
  • 8[18]Tang N Y.Refined 450℃ isotherm of Zn-Fe-Al phase diagram[J].Material Science and Techlonogy,1995,11:870-873.
  • 9[19]Ilinca F,Ajersch F,Baril C,et al.Numerical simulation of the galvanizing process during GA to GI transition[J].International Journal for Numerical Methods in Fluids,2006,53(10):1629-1646.
  • 10[20]Ajersch F,Hetu J F,Goodwin F.Numerical simulation of the rate of dross formation in continuous galvanizing baths[J].Iron and Steel Technology,2006,3(8):93-101.

共引文献7

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部