期刊文献+

Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa 被引量:1

Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa
下载PDF
导出
摘要 Background: Tropical dry forests cover less than 13 % of the world's tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods: This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results: The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Bdikioea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenfi and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 - 6.2 m^2 ha&-1). The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis - Diafium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions: The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P. angolensis can best withstand high fire frequency but shows signs of a higher vulnerability to climate change. Conservation and climate adaptation strategies should include protection of the slope communities through refuges. Follow-up studies are needed on short term dynamics, especially near the edges of the transition zone towards shrub land. Background: Tropical dry forests cover less than 13 % of the world's tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods: This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results: The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Bdikioea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenfi and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 - 6.2 m^2 ha&-1). The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis - Diafium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions: The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P. angolensis can best withstand high fire frequency but shows signs of a higher vulnerability to climate change. Conservation and climate adaptation strategies should include protection of the slope communities through refuges. Follow-up studies are needed on short term dynamics, especially near the edges of the transition zone towards shrub land.
出处 《Forest Ecosystems》 SCIE CSCD 2017年第1期33-44,共12页 森林生态系统(英文版)
基金 support of The Future Okavango(TFO)and the SASSCAL projects which were funded by the German Federal Ministry of Education and Research under promotion numbers 01 LL 0912 A and 01 LG1201 M respectively support by the KLIMOS ACROPOLIS research platform(Belgian Development Aid through VLIR/ARES)
关键词 Baikiaea woodland Tree community Namibia boosted regression trees Pterocarpus ango/ensis Disturbance Miombo Ecoregion Climate change Baikiaea woodland, Tree community, Namibia, boosted regression trees, Pterocarpus ango/ensis Disturbance, Miombo Ecoregion, Climate change
  • 相关文献

参考文献1

二级参考文献2

共引文献17

同被引文献23

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部