期刊文献+

自复位两边连接钢板剪力墙工作性能分析 被引量:1

PERFORMANCE ANALYSIS OF SELF-CENTERING STEEL PLATE SHEAR WALLS WITH BEAM-CONNECTED PLATES
下载PDF
导出
摘要 自复位钢板剪力墙是将后张拉节点和薄钢板剪力墙相结合而构成的一种新型抗侧力体系。后张拉梁-柱节点和柱脚节点提供复位能力,减小结构震后残余变形,内填钢板则是主要的抗侧力元件和耗能元件。内填钢板只与钢梁连接可以减小对边框柱的需求,消除节点开口在钢板角部的应力集中,从而避免了钢板角部撕裂。建立自复位两边连接钢板剪力墙有限元模型进行水平加载分析,研究内填钢板和边缘框架的相互作用,并与自复位四边连接钢板剪力墙的工作性能进行对比分析。分析结果表明,与自复位四边连接钢板剪力墙相比,钢板两边连接的自复位钢板墙具有更好的复位能力,但强度、刚度和耗能能力较小。 Self-centering steel plate shear wall( SC-SPSW) is a new lateral load-resisting system composed of posttensioned connections and steel plate shear wall. The SC-SPSW system utilizes thin steel web plate to provide lateral load resistance and energy dissipation,while recenters the building by post-tensioned beam-to-column connections and column base connections to reduce the residual drift. Connecting the web plate to the frame beams only can reduce frame columns demands and mitigate web plate damage by eliminating the stress concentration on web plate corners due to the post-tensioned connections rock openings. The finite element model of SC-SPSW with beam-connected web plates was conducted and numerically analyzed under lateral loading. The interaction between the infill plate and frame members was studied. The behavior of the SC-SPSWs with beam-connected and fully-connected web plates was compared by using the results of nonlinear analysis. The results showed that SC-SPSW with beam-connected web plates had better recentering capacity,but smaller strength,stiffness and energy dissipation capacities than fully-connected SC-SPSW.
出处 《钢结构》 北大核心 2017年第3期7-12,共6页 Steel Construction
基金 广东省自然科学基金团队项目(8351009101000001) 广州市珠江科技新星专项项目(2011J2200023)
关键词 自复位 钢板剪力墙 后张拉节点 残余变形 耗能 self-centering steel plate shear wall post-tensioned connection residual deformation energy dissipation
  • 相关文献

参考文献2

二级参考文献78

  • 1王伟,王明兴,陈以一,曹富荣.钢管柱-H形梁内加劲铸钢模块节点抗震性能试验研究[J].建筑结构学报,2015,36(3):71-79. 被引量:11
  • 2王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究[J].西安建筑科技大学学报(自然科学版),2007,39(2):181-186. 被引量:47
  • 3PEER. Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering [ R ]. Berkeley, CA : University of California at Berkeley, 2010 : A-Ⅵ-2.
  • 4Cimellaro G P, Reinhom A M, Bruneau M. Framework for analytical quantification of disaster resilience [ J ]. Engineering Structures, 2010, 32 ( 11 ) : 3639-3649.
  • 5Vargas R, Bruneau M. Analytical response and design of buildings with metallic structural fuses: Ⅰ [ J ]. Journal of Structural Engineering, ASCE, 2009, 135 (4) : 386-393.
  • 6Wada A, Conor J J, Kawai H, et al. Damage tolerant structures [ C ]// Proceedings of Fifth US-Japan Workshop on the Improvement of Structural Design and Construction Practices. San Diego, California, USA : Applied Technology Council, 1992: 27-39.
  • 7Soong T T, Spencer Jr B F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice [ J]. Engineering Structures, 2002, 24(3):243-259.
  • 8Ke K, Chert Y Y. Energy-based damage-control design of steel frames with steel slit walls [ J ]. Structural Engineering and Mechanics, 2014, 52 ( 6 ) : 1157-1176.
  • 9Dougka G, Dimakogianni D, Vayas I. Innovative energy dissipation systems ( FUSEIS 1-1 ) : experimental analysis[J]. Journal of Constructional Steel Research, 2014, 96: 69-80.
  • 10Malakoutian M, Berman J W, Dusicka P. Seismic response evaluation of the linked column frame system [ J ]. Earthquake Engineering and Structural Dynamics, 2013, 42(6) : 795-814.

共引文献49

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部