期刊文献+

同质性和社会影响对混合型社交网络形成的仿真分析 被引量:10

The Simulation Analysis of Homophily and Social Influence on the Formation of Hybrid Online Social Networks
下载PDF
导出
摘要 在线社交网络已经成为人们网络生活的最主要平台,网络也逐渐从单一的社会网络向混合型网络转变,形成了社会网络和参与活动形成的归属网络两类网络相互交织和促进的现象。识别社会影响和同质性两类机制在这类网络形成中的作用大小和特征,对促进在线社交网络健康发展和采取不同的营销策略意义重大。本文先对百度贴吧、派代网作实证分析,分析不同机制下网络呈现的结构特征,然后使用扩展的社会归属网络模型对混合型在线社交网络进行仿真,分析社会影响和同质性两种机制对混合型在线社交网络形成的影响。 Online social networks have become the main platform for people. The social network has gradually changed from a single network to a hybrid network, one is social network and another network formation from participation in activities. The two types of networks Interweave and promote each other. It is valuable for promote the healthy development of online social net- works and adopt different marketing strategies, to identify the role and characteristics of the two mechanisms about social influence and homogeneity. Firstly, the paper made an empirical analysis on the Baidu PostBar and Paidai BBS, analyzing the structural characteristics of their networks under different mechanisms. Then, it used the extended affiliation Networks model to simulate the hybrid online social network. The paper analysed the impact of two mechanisms on the formation of hybrid ol^ne social networks.
作者 何军 刘业政 He Jun Liu Yezheng(School of Management, Hefei University of Technology, Hefei 230009, China School of Business, Anhui University, Hefei 230601, China)
出处 《现代情报》 CSSCI 北大核心 2017年第4期87-94,共8页 Journal of Modern Information
基金 国家973计划课题"社交网络分析与网络信息传播的基础研究"(项目编号:2013CB329603) 国家自然科学基金项目"基于模体挖掘面向在线社交网络中虚拟社区的群推荐系统研究"(项目编号:71371062) 安徽省教育厅人文社科重点项目"在线社交网络社区形成机制对企业社会化营销策略的影响研究"(项目编号:SK2015A234)
关键词 混合型社交网络 同质性 社会影响 仿真分析 hybrid online social networks homophily social influence simulation analysis
  • 相关文献

参考文献3

二级参考文献57

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2Mislove A, Marcon M, Gummadi K P, et al. Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM Special Interest Group on Data Communication Conference on Internet Measurement. San Diego, 2007: 29-42.
  • 3Centola D. The spread of behavior in an online social network experiment[J]. Science, 2010, 329(5996): 1194-1197.
  • 4Hu H, Wang X. How people make friends in social networking sites: A microscopic perspective[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1877-1886.
  • 5Leskovec J, Backstrom L, Kumar R, et al. Microscopic evolution of social networks[C]// Proceedings of the 14th ACM Special Interest Group in Knowledge Discovery and Data Mining International Conference on Knowledge Discovery and Data Mining. Las Vegas, 2008: 462-470.
  • 6Xiang R J, Neville J, Rogati M. Modeling relationship strength in online social networks[C]//Proceedings of the 19th International Conference on World Wide Web. Raleigh: North Carolina, 2010: 981-990.
  • 7Han J, Faloutsos C, Philip S Y, Link Mining: Models, Algorithms, and Applications[M]. New York: Springer, 2010: 337-357.
  • 8Toivonen R, Kovanen L, Kivela M, etal. A comparative study of social network models: Network evolution models and nodal attribute models[J]. Social Networks, 2009, 31(4): 240-254.
  • 9Muchnik L, Pei S, Parra L C, et al. Origins of power-law degree distribution in the heterogeneity of human activity in social networks[J]. Scientific Reports, 2013, 3: 1783.
  • 10Viswanath B, Mislove A, Cha M, et al. On the evolution of user interaction in facebook[C]//Proceedings of the 2nd ACM Workshop on Online Social Networks. Barcelona, 2009: 37-42.

共引文献36

同被引文献144

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部