期刊文献+

纳米纤维素复合气凝胶超级电容器的制备与性能 被引量:7

Preparation and Properties of NFC Composite Aerogel Supercapacitors
下载PDF
导出
摘要 以纳米纤维素(NFC)、还原氧化石墨烯(RGO)及聚苯胺(PANI)为原料,利用冷冻干燥技术制备出多孔性纳米纤维素NFC复合气凝胶电极材料。通过调控NFC的羧基含量及冷冻温度,可对复合气凝胶的孔径分布及比表面积进行优化从而提高其导电性能,最后以聚乙烯醇/硫酸(PVA/H2SO4)为电解质,制备了NFC复合气凝胶超级电容器。结果表明:随着羧基含量的增加,NFC纤维间的氢键作用逐步增强使得形成交联网络更为紧密,制备的复合气凝胶孔隙尺寸变小且比表面积增大,其导电性能和电化学性能得到进一步的提升;冷冻温度直接影响形成的冰晶的尺寸大小和数量,低温冷冻制备的气凝胶孔隙数量较多且比表面积较大,形成的三维导电网络更为完整,具有良好的导电性能和电化学性能。当NFC的羧基含量为1.69 mmol/g及冷冻温度为-40℃时,复合气凝胶的比表面积为155.8 m2/g,组装的超级电容器在电流密度为0.5 A/g下其比电容为402 F/g。 Porous NFC/RGO/PANI composite aerogel electrodes have been prepared via freeze- drying process. By regulating the carboxyl content of NFC and the freezing temperature,the pore distribution and the specific surface area of composite aerogel can be optimized to obtain good structure stability and conductivity. The results showed that with the increase of the carboxyl content of NFC,the hydrogen bonding between the fibers increased steadily and the crosslinked network became tighter,resulting in smaller pore size and higher specific surface area. Furthermore,freezing temperature directly affected the size and number of the ice crystals. The pore size of composite aerogel became smaller and the specific surface area became larger with the decrease of the freezing temperature.When the carboxyl content of NFC was 1. 69 mmol/g and freezing temperature achieved- 40 ℃,the composite aerogel can obtain the specific surface area of 155. 8 m^2/ g and the assembled supercapacitor exhibited the specific capacitance of 402 F/g at a current density of 0. 5 A/g.
作者 林东瀚 陈港 方志强 Lin Dong-han Chen Gang Fang Zhi-qiang(State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong,China)
出处 《造纸科学与技术》 2017年第1期28-35,共8页 Paper Science & Technology
基金 国家"973"计划项目(2010CB732206) 广东省部产学研专项资金技术前沿项目(2013B090500071)
关键词 纳米纤维素 还原氧化石墨烯 聚苯胺 复合气凝胶 超级电容器 nanocellulose reduced graphene oxide polyaniline composite paper-based supercapacitor
  • 相关文献

参考文献2

二级参考文献50

  • 1Snook, G.; Kao, P.; Best, A. S. J. Power Sources 2011, 196, 1.
  • 2Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q. Ind. Eng. Chem. Fundam. 2012, 51, 14390. doi: 10.1021/ie301734f.
  • 3Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Electrochem. Commun. 2008, 10 (7), 1056. doi: 10.1016/j.elecom.2008.05.007.
  • 4Bai, S.; Shen, X. RSC Adv. 2012, 2, 64. doi: 10.1039/c1ra00260k.
  • 5Nemzer, L. R.; Schwartz, A.; Epstein, A. J. Macromolecules 2010, 43 (9), 4324. doi: 10.1021/ma100112g.
  • 6Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J. ACS Appl. Mater. Interfaces 2010, 2 (9), 2521. doi: 10.1021/am100293r.
  • 7Liu, H.; Zhang, W.; Song, H.; Chen, X.; Zhou, J.; Ma, Z. Electrochim. Acta 2014, 146, 511. doi: 10.1016/j.electacta.2014.09.083.
  • 8Sun, Y. Q.; Shi, G. Q. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 231. doi: 10.1002/polb.23226.
  • 9Zhou, S. P.; Zhang, H. M.; Zhao, Q.; Wang, X. H.; Liu, J.; Wang, F. S. Carbon 2013, 5, 440.
  • 10Li, Z. F.; Zhang, H. Y.; Liu, Q.; Sun, L. L.; Xie, J. ACS Appl. Mater. Interfaces 2013, 5, 2685. doi: 10.1021/am4001634.

共引文献47

同被引文献44

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部