期刊文献+

String similarity join with different similarity thresholds based on novel indexing techniques 被引量:2

String similarity join with different similarity thresholds based on novel indexing techniques
原文传递
导出
摘要 String similarity join is an essential operation of many applications that need to find all similar string pairs from two given collections. A quantitative way to determine whether two strings are similar is to compute their similarity based on a certain similarity function. The string pairs with similarity above a certain threshold are regarded as results. The current approach to solving the similarity join problem is to use a unique threshold value. There are, however, several scenarios that require the support of multiple thresholds, for instance, when the dataset includes strings of various lengths. In this scenario, longer string pairs typically tolerate much more typos than shorter ones. Therefore, we proposed a so- lution for string similarity joins that supports different simi- larity thresholds in a single operator. In order to support dif- ferent thresholds, we devised two novel indexing techniques: partition based indexing and similarity aware indexing. To utilize the new indices and improve the join performance, we proposed new filtering methods and index probing tech- niques. To the best of our knowledge, this is the first work that addresses this problem. Experimental results on real-world datasets show that our solution performs efficiently while pro- viding a more flexible threshold specification. String similarity join is an essential operation of many applications that need to find all similar string pairs from two given collections. A quantitative way to determine whether two strings are similar is to compute their similarity based on a certain similarity function. The string pairs with similarity above a certain threshold are regarded as results. The current approach to solving the similarity join problem is to use a unique threshold value. There are, however, several scenarios that require the support of multiple thresholds, for instance, when the dataset includes strings of various lengths. In this scenario, longer string pairs typically tolerate much more typos than shorter ones. Therefore, we proposed a so- lution for string similarity joins that supports different simi- larity thresholds in a single operator. In order to support dif- ferent thresholds, we devised two novel indexing techniques: partition based indexing and similarity aware indexing. To utilize the new indices and improve the join performance, we proposed new filtering methods and index probing tech- niques. To the best of our knowledge, this is the first work that addresses this problem. Experimental results on real-world datasets show that our solution performs efficiently while pro- viding a more flexible threshold specification.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期307-319,共13页 中国计算机科学前沿(英文版)
基金 This work was supported by China Scholarship Council and the National Natural Science Foundation of China (Grant Nos. 61402329 and 51378350).
关键词 similarity join similarity aware index similarity thresholds similarity join, similarity aware index, similarity thresholds
  • 相关文献

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部