期刊文献+

Short-term solar flare prediction using multi-model integration method 被引量:1

Short-term solar flare prediction using multi-model integration method
下载PDF
导出
摘要 A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors from a pool of observation databases. The outputs of the base models are normal- ized first because these established models extract predictors from many data resources using different prediction methods. Then weighted integration of the base models is used to develop a multi-model integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm. Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager lon- gitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross validation. Experimental results showed that the MIM outperforms any individual model in nearly every data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus, integrating more diversified models, such as an expert system, a statistical model and a physical model, will greatly improve the performance of the MIM. A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors from a pool of observation databases. The outputs of the base models are normal- ized first because these established models extract predictors from many data resources using different prediction methods. Then weighted integration of the base models is used to develop a multi-model integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm. Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager lon- gitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross validation. Experimental results showed that the MIM outperforms any individual model in nearly every data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus, integrating more diversified models, such as an expert system, a statistical model and a physical model, will greatly improve the performance of the MIM.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第4期23-34,共12页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11078010) SOHO is a project of international cooperation between the European Space Agency(ESA) and NASA
关键词 methods: statistical - Sun activity - Sun' magnetic fields - Sun' photosphere - Sun FLARES methods: statistical - Sun activity - Sun' magnetic fields - Sun' photosphere - Sun flares
  • 相关文献

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部