期刊文献+

What are the evolutionary origins of stomatal responses to abscisic acid in land plants? 被引量:4

What are the evolutionary origins of stomatal responses to abscisic acid in land plants?
原文传递
导出
摘要 The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution. The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第4期240-260,共21页 植物学报(英文版)
基金 funded by the Australian Research Council grants DE140100946(SM)and DP140100666(TB)
  • 相关文献

参考文献2

二级参考文献2

共引文献35

同被引文献72

引证文献4

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部