期刊文献+

Characterization of basic physical properties of Sb_(2)Se_(3) and its relevance for photovoltaics 被引量:4

原文传递
导出
摘要 Antimony selenide (SbzSe3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance. Antimony selenide (SbzSe3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance.
出处 《Frontiers of Optoelectronics》 EI CSCD 2017年第1期18-30,共13页 光电子前沿(英文版)
  • 相关文献

同被引文献6

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部