摘要
This paper presents a new compensation pixe] circuit suitable for active-matrix organic light-emitting diode (AMOLED) stereoscopic three dimensional (3D~ displays with shutter glasses. The simultaneous emissio~ method was used to solve the crosstalk problem, in which the periods of initialization and threshold voltage detectio11 occur for each pixel of whole panel simultaneously. Furthermore, there was no need of the periods of initialization and threshold voltage detection from the second frame beginning by one-time detection method. employing threshold voltage The non-uniformity of the proposed pixel circuit was considerably low with an average value of 8.6% measured from 20 discrete proposed pixel circuits integrated by In-Zn-O thin film transistors (IZO TFTs). It was shown that the OLED current almost remains constant for the number of frames up to 70 even the threshold voltage detection period only exists in the first frame.
This paper presents a new compensation pixe] circuit suitable for active-matrix organic light-emitting diode (AMOLED) stereoscopic three dimensional (3D~ displays with shutter glasses. The simultaneous emissio~ method was used to solve the crosstalk problem, in which the periods of initialization and threshold voltage detectio11 occur for each pixel of whole panel simultaneously. Furthermore, there was no need of the periods of initialization and threshold voltage detection from the second frame beginning by one-time detection method. employing threshold voltage The non-uniformity of the proposed pixel circuit was considerably low with an average value of 8.6% measured from 20 discrete proposed pixel circuits integrated by In-Zn-O thin film transistors (IZO TFTs). It was shown that the OLED current almost remains constant for the number of frames up to 70 even the threshold voltage detection period only exists in the first frame.